Here's one way to understand it. Draw a diagram of three consecutive blocks in the arch, and idealise them as point masses each with a fixed weight W, connected by stiff, massless rods.
The lower rod pushes up diagonally on the central point mass and the upper rod pushes down diagonally at a slightly shallower angle than that of the lower rod. The force in the lower rod will be larger than in the upper rod (the lower members bear the weight of all members above them).
Draw the vectors of the forces in the two rods end to end, in such a way that the head (arrow end) of the second vector (point A) is exactly above the tail of the first one (point B) (It doesn't matter which vector you draw first - the net result is the same). For the bridge to be stationary, the vector from A to B must be the weight of the central mass.
That vector AB is fixed, regardless of the curvature of the bridge - it's the weight of a standard block. Now, as you change the curvature, the two other sides of the vector triangle change. If you increase (decrease) the curvature they shorten (lengthen) because the angle opposite the AB vector increases (decreases). So you can see that increasing the curvature increases that angle and thus shortens the two force vectors, which means less stress in the bridge.
Given that framework, it's pretty easy to write some equations to quantify that.