How Does Hamilton's Principle Lead to Lagrange's Equations?

lampCable
Messages
22
Reaction score
1

Homework Statement


So I'm deriving Lagrange's equations using Hamilton's principle which states that the motion of a dynamical system follows the path, consistent with any constraints, that minimise the time integral over the lagrangian L = T-U, where T is the kinetic energy and U is the potential energy.

We define the lagrangian as L = L(q_j,\dot{q}_j,t). Now I want to let q_j = q_j^{(0)}+\delta q_j, where \delta q_j is the variation of q_j. We also define
<br /> S=\int_{t_1}^{t_2}L(q_j,\dot{q}_j,t)dt<br />

So according to Hamilton's principle we would now like to minimise S. At extremum we have \delta S = 0, i.e. the variation of S is zero.

Now, my problem:

My first experience with calculus of variations was to find Euler's equation. We considered then the functional
<br /> J = \int_{x1}^{x2}f(y,y&#039;,x)dx<br />
and our goal was to find the function y that minimise S. To do this we let y(x,\alpha) = y(x)+\alpha\eta(x), and set \frac{\partial J}{\partial\alpha}|_{\alpha=0}=0, where \eta is some arbitrary function. This would give us an equation in y(x) since we evaluate at \alpha=0.

So, returning to the derivation of Lagrange's equations. I set to find q_j that minimise S in similar fashion as we did for J. But this time I do not have any \alpha that I can put to zero. Should I instead take \delta S|_{\delta q_j = 0}=0? For unless I have understood it wrong, it is actually q_j^{(0)} that we want to find, right? I mean it seems strange to find q_j to be some curve q_j^{(0)} added by some arbitrary variations.

At the same time, I am not sure whether evaluating \delta q_j at makes sense. What increase my doubts is that neither in my textbook (Marion and Thornton) nor at any lecture has it been emphasized that we evaluate with \delta q_j = 0.

Anyhow, I am thankful for answers.
 
Physics news on Phys.org
Remember the definition of a derivative ? ##\displaystyle f'(x)=\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} ##. And to find an extremum of the function, you just set ##f'(x)=0 ## .
Its the same here, the only difference being that here we're talking about a functional, a function in the space of functions defined on a given interval with given boundary conditions. There is just one difference though. What we do here to derive the EL equations is, after doing the calculations and arriving at the following equation:
## \delta S=\int_{t_1}^{t_2} \left[ \frac{\partial L}{\partial q_j}-\frac{d}{dt} \frac{\partial L}{\partial \dot{q_j}} \right]\delta q_j dt=0##
We reason that this equation should be true for any non-zero ##\delta q_j ## so we should have ##\frac{\partial L}{\partial q_j}-\frac{d}{dt} \frac{\partial L}{\partial \dot{q_j}} =0##. The point is, although ##\delta q_j## is supposed to be very small, its not exactly zero. But there should be somewhere that we actually use the fact that ##\delta q_j## is very small, and its actually in the derivation of the above equation were we expand the Lagrangian in a Taylor series and treat ## \delta q_j ## as the small displacement from ## q_j^{(0)} ##.
Anyway, I think you still can use the ## y(x,\alpha)=y(x)+\alpha \eta(x) ## approach here. But even here, its actually ##\alpha\to 0## not ##\alpha=0##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top