daveyp225
- 88
- 0
Just as a concrete example, say A and A' are two 2x2 matricies from R^2 to R^2,
A = \left [ \begin{array}{cc} a \,\, b \\ c \,\, d \end{array} \right ]
A' = \left [ \begin{array}{cc} x \,\, y \\ z \,\, w \end{array} \right ]
What would A \otimes_\mathbb{R} A' look like (say wrt the standard basis of \mathbb{R}^2 \otimes_\mathbb{R} \mathbb{R}^2?).
Any help in understanding this would be greatly appreciated.
A = \left [ \begin{array}{cc} a \,\, b \\ c \,\, d \end{array} \right ]
A' = \left [ \begin{array}{cc} x \,\, y \\ z \,\, w \end{array} \right ]
What would A \otimes_\mathbb{R} A' look like (say wrt the standard basis of \mathbb{R}^2 \otimes_\mathbb{R} \mathbb{R}^2?).
Any help in understanding this would be greatly appreciated.