Bertrandkis
- 25
- 0
Question 1
Let u, v1,v2 ... vn be vectors in R^{n}. Show that if u is orthogonal to v1,v2 ...vn then u is orthogonal to every vector in span{v1,v2...vn}
My attempt
if u is orthogonal to v1,v2 ...vn then(u.v1)+(u.v2)+...+(u.vn)=0
Let w be a vector in span{v1,v2...vn} therefore
w=c1v1+c2v2+...+cnvn
u.w=u(c1v1+c2v2+...+cnvn)
=>c1(u.v1)+c2(u.v2)+...+cn(u.vn) =0
So u is orthogonal to w
Question 2
Let \{v1,v2...vn \} be a basis for the n-dimensional vector space R^{n}.
Show that if A is a non singular matrix nxn then \{Av1,Av2...Avn \} is also a basis for R^{n}.
Let w be a vector in R^{n} therefore w can be written a linear combination of vectos in it's basis
x=c1v1+c2v2+...+cnvn
Av1={\lambda}1x1,Av2={\lambda}2x2 ...Avn={\lambda}3xn
so
Ax=A(c1v1+c2v2+...+cnvn)
Ax={\lambda}1c1v1+{\lambda}2c2v2+...+{\lambda}ncnvn)
therefore \{Av1,Av2...Avn \} is also a basis for R^{n}.
Let u, v1,v2 ... vn be vectors in R^{n}. Show that if u is orthogonal to v1,v2 ...vn then u is orthogonal to every vector in span{v1,v2...vn}
My attempt
if u is orthogonal to v1,v2 ...vn then(u.v1)+(u.v2)+...+(u.vn)=0
Let w be a vector in span{v1,v2...vn} therefore
w=c1v1+c2v2+...+cnvn
u.w=u(c1v1+c2v2+...+cnvn)
=>c1(u.v1)+c2(u.v2)+...+cn(u.vn) =0
So u is orthogonal to w
Question 2
Let \{v1,v2...vn \} be a basis for the n-dimensional vector space R^{n}.
Show that if A is a non singular matrix nxn then \{Av1,Av2...Avn \} is also a basis for R^{n}.
Let w be a vector in R^{n} therefore w can be written a linear combination of vectos in it's basis
x=c1v1+c2v2+...+cnvn
Av1={\lambda}1x1,Av2={\lambda}2x2 ...Avn={\lambda}3xn
so
Ax=A(c1v1+c2v2+...+cnvn)
Ax={\lambda}1c1v1+{\lambda}2c2v2+...+{\lambda}ncnvn)
therefore \{Av1,Av2...Avn \} is also a basis for R^{n}.