How Does Refractive Index Variation Affect Mirage Visibility in a Desert?

  • Thread starter Thread starter Quantum Sphinx
  • Start date Start date
  • Tags Tags
    Quantitative Study
AI Thread Summary
The discussion focuses on the effects of varying refractive index on mirage visibility in a desert scenario involving a light source at a height H and an observer at height h. The main equations referenced include Snell's law and the trajectory of light, which is described as an arc cosh function. The participant is struggling with the integration limits and the implications of the refractive index being zero at ground level, questioning the validity of the problem statement. They seek clarification on the conditions necessary for a mirage to form, particularly regarding the angle of incidence and height. Overall, the thread highlights the complexities of applying optical principles to this specific scenario.
Quantum Sphinx
Messages
2
Reaction score
0

Homework Statement


Question:[/B] Imagine you are in a massive desert. There is a tower of height H. A light source at the top of the tower can emit light in all directions. You are a person whose eyes are at a height h (h<H) above the ground. The refractive index of the air varies as μ=kd where k is a positive constant and d is the distance above the ground.

  1. What is the minimum distance at which you will still be able to see the mirage.
  2. What is the minimum possible distance between you and the mirage.
  3. If the ray starts off making an angle α below the horizontal what is the condition that a mirage is created
(The 3 questions are independent)

2. Homework Equations :
snell's law

2. The attempt at a solution
My approach:
I started off by assuming an element of height dx at an elevation x above the ground. Then I assumed that the ray of light is incident at an angle of θ and that the angle of refraction isθ+dθ. the refractive index changes from μ(x+dx) to μ(x). So,

μ(x+dx)⋅sin⁡(θ)=μ(x)⋅sin⁡(θ+dθ)

Solving this gave me weird results. I think it was because I was unable to incorporate Total Internal Reflection into it.

If somebody could either point me in the right direction for solving the question or point out an error (if there is one) in the question (because I made the question myself) then I would be grateful.
 
Last edited:
Physics news on Phys.org
Quantum Sphinx said:
Solving this gave me weird results.
Please post your working. It will be important to get the sign right in your first equation.

Edit: I get that the trajectory of the ray is an arc cosh function.
 
Last edited:
haruspex said:
Please post your working. It will be important to get the sign right in your first equation.

Edit: I get that the trajectory of the ray is an arc cosh function.

Like I said:
I started off by assuming an element of height dx at an elevation x above the ground. Then I assumed that the ray of light is incident at an angle of θ and that the angle of refraction isθ+dθ. the refractive index changes from μ(x+dx) to μ(x). So,

μ(x+dx)⋅sin⁡(θ)=μ(x)⋅sin⁡(θ+dθ)

That is the first equation.

Then -
μ⋅x⋅sin(θ) + μ⋅sin(θ)⋅dx = μ(x)⋅sin(θ)⋅cos(dθ) + μ(x)⋅cos(θ)⋅sin(dθ)
( assumptions - cos(dθ) = 1 and sin(dθ) = dθ )

which gives -
sin(θ)⋅dx = x⋅cos(θ)⋅dθ

dx/x = cot(θ)⋅dθ

Integrating,
[ln x] = [ ln |sin(θ)| ]

The problem comes in putting the limits. What limit should I use over [ ln |sin(θ)| ]. For question 1, the limits over [ln x] should be from H to h(I think).
 
Quantum Sphinx said:
The problem comes in putting the limits. What limit should I use over [ ln |sin(θ)| ]. For question 1, the limits over [ln x] should be from H to h(I think).
Very sorry - I was busy when I saw your reply and forgot to come back to it.

For a mirage to occur, what value of angle must be reached before what value of height?

Edit: just realized something about the problem statement. It implies the refractive index is zero at d=0. It cannot be less than 1, surely.
For the first two parts of the question, you need to look at how horizontal distance gets into the equation (x is your vertical distance).
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top