Jimmy Snyder
- 1,122
- 22
Homework Statement
I have edited Ryder's text to emphasize the issue I am having. The actual text is approx. 40% down from the top of the page.
(\frac{2\alpha}{i})^{3/2}\int exp(\frac{i}{2\hbar}\mathbf{P\cdot x} + i\alpha \mathbf{x}^2)d\mathbf{x}
The integral may be evaluated by appealing to equation (5A.3) giving
exp(\frac{i\mathbf{P}^2(t_1 - t_0)}{8m\hbar})
Homework Equations
\alpha = \frac{m}{2h(t_1 - t_0)}
eqn (5A.3)
\int exp(-ax^2 + bx)dx = (\frac{\pi}{a})^{1/2}exp(\frac{b^2}{4a})
The Attempt at a Solution
The integral is in the form of eqn (5A.3) where
a = -i\alpha; b = \frac{i\mathbf{P}}{2\hbar}
and there are 3 dimensions. So
(\frac{2\alpha}{i})^{3/2}\int exp(\frac{i}{2\hbar}\mathbf{P\cdot x} + i\alpha \mathbf{x}^2)d\mathbf{x}
= (\frac{2\alpha}{i})^{3/2}(\frac{i\pi}{\alpha})^{3/2}exp(\frac{-i\mathbf{P}^2h(t_1 - t_0)}{8m\hbar^2})
= (2\pi)^{3/2}exp(\frac{-i\mathbf{P}^22\pi(t_1 - t_0)}{8m\hbar})
so there are a couple of embarassing factors of 2\pi hanging about.