cd80187
- 38
- 0
A block of mass m = 1.8 kg is dropped from height h = 55 cm onto a spring of spring constant k = 1420 N/m (Fig. 8-36). Find the maximum distance the spring is compressed.
For this problem, I began by using the equation 2a(change in x) = (Velocity final) squared since velocity inital is simply 0. After that, I applied the equation 1/2m(v squared) to find the amount of kinetic energy, since looking at this system, there is no potential at the point where it hits the spring. Next, I said that the potential energy of the spring (1/2k (x squared)) + mg(change in y) = KE that I found from the first step. Next I formed a quadratic equation and found what the distance compressed was, but my answer is still incorrect, so I was just wondering what I was doing wrong, and if so, how to solve it.
For this problem, I began by using the equation 2a(change in x) = (Velocity final) squared since velocity inital is simply 0. After that, I applied the equation 1/2m(v squared) to find the amount of kinetic energy, since looking at this system, there is no potential at the point where it hits the spring. Next, I said that the potential energy of the spring (1/2k (x squared)) + mg(change in y) = KE that I found from the first step. Next I formed a quadratic equation and found what the distance compressed was, but my answer is still incorrect, so I was just wondering what I was doing wrong, and if so, how to solve it.