How is Elastic Energy of a Bent Steel Rod Approximated?

cedricyu803
Messages
20
Reaction score
0

Homework Statement


[Math. for Physicists, M. Stone Problem 1.4]

Assume that a rod of length L is only slightly bent into the yz plane and lies close to the z axis, show that the elastic energy can be approximated as
U[y]= \int_{0}^{L} \frac{1}{2}YI(y'')^2 dz

Homework Equations



It is given that the elastic energy per unit length of a bent rod , u=\frac{1}{2}YI/R^{2}
R is the radius of curvature due to the bending, Y is the Young's modulus of the steel and I is the moment of inertia of the rod's cross section about an axis through its centroid and
perpendicular to the plane in which the rod is bent.

The Attempt at a Solution



I don't quite get the picture.
Does it mean that each infinitesimal piece is a segment of a circle R with a different center? Or should I consider the whole bent rod as a segment of a circle of radius R?

But still the infinitesimal rod length should be \sqrt{1+(y')^2} dz, so how can I get y''^2?

Thank you very much!



The Attempt at a Solution

 
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top