How is Frequency Redshift Related to Sphere's Proper Area and Flux Ratio?

unscientific
Messages
1,728
Reaction score
13

Homework Statement



(a) Show the relation between frequency received and emitted
(b) Find the proper area of sphere
(c) Find ratio of fluxes

2007_B5_Q4.png

Homework Equations

The Attempt at a Solution



Part (a)
Metric is ##ds^2 = -c^2dt^2 + a(t)^2 \left( \frac{dr^2}{1-kr^2}+ r^2(d\theta^2 + \sin^2\theta) \right)##. For a light-like geodesic, we have ##ds^2=0##, which means
c\frac{1}{a(t)} dt = \frac{1}{\sqrt{1-kr^2}} dr
Since RHS is purely in terms of spatial distance, we have
\frac{1}{a(t_1)}\delta t_1 = \frac{1}{a(t_2)}\delta t_2

Part(b)
Proper area is:
dA = \left( a r d\theta \right)\left( a r \sin\theta d\phi \right)
A = 4\pi r^2 a^2(t_2)

Part(c)
Let's first start with emitter at A.
From part (a), frequency observed is ##\frac{a(t_{1A})}{a(t_{2A})}f_0## where ##t_1## and ##t_2## is time emitted and received.
Area at reception is ##4\pi r_a^2 a^2(t_{2A})##.
Flux is then proportional to ##\frac{a(t_{1A})}{a(t_{2A})^3 r_a^2}##. Flux for B is then ##\frac{a(t_{1B})}{a(t_{2B})^3 r_b^2}##.

Ratio of flux is then:
\frac{F_B}{F_A} = \frac{a(t_B)}{a(t_A)} \frac{r_a^2}{r_b^2} \frac{a^3(t_{2A})}{a^3(t_{2B})}

How do I find the time the radiation is received ##t_{2A}## and ##t_{2B}##? Clearly they are different.
 
Physics news on Phys.org
bumpp
 
Solved.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top