How Long Should Rockets Fire to Rotate a Space Station?

AI Thread Summary
To achieve artificial gravity on a space station shaped like a thin annular cylinder, rockets must fire to rotate it. The mass of the space station is 6.0 × 10^4 kg, with inner and outer radii of 100 m and 105 m, respectively. The thrust from two rockets, each producing 102 N, is considered for calculating the necessary firing time. The moment of inertia calculation involves both radii, assuming uniform mass distribution, but the difference in mass between the inner and outer sections is minimal. The discussion emphasizes the importance of accurately accounting for the total thrust and inertia in determining the rotation time.
ft92
Messages
19
Reaction score
1

Homework Statement


A space station of mass 6.0 × 104-kg is to be constructed in the shape of a thin annular cylinder (or ring). The inner radius of the annular cylinder is 100-m, and the outer radius (and location of the floor) is 105-m. Artificial gravity equivalent to free-fall acceleration, g, will be implemented by rotating the hoop through its central axis. Once the space station is constructed, two small rockets attached tangentially to opposite points on the hoop will be fired to set the space station into rotation. If each of the rockets produces a thrust of 102-N, for what time interval, in minutes, must they be fired to achieve the desired rotation? Assume the mass of the space station will be distributed uniformly within the annular ring.

I'm asked to find t in minutes.

Homework Equations

The Attempt at a Solution


media%2F1c5%2F1c55c597-5e96-4a77-a9d9-248e5afa666f%2FphpFBNHVZ.png
 
Physics news on Phys.org
The floor is at the outer radius. So it seems to me that you need to set the acceleration equal to g at the outer radius rather than the inner radius. This would not make a big difference.

Did you account for the fact that there are two rockets?

Otherwise, your work looks good to me.
 
Can you explain your calculation of the moment of inertia of the space station in more detail? In particular, why do you add the squares of the two radii?
 
The inertia calculation assumes that there is equal mass on both the inner and the outer tube. Thus, the total inertia is (1/2)MR_1^2 + (1/2)MR_2^2, which he factored. That assumption should be valid, since the difference in mass wouldn't be much. ft92, what is the actual issue here? How far off are you from the correct answer?
 
Torus moment of inertia is a bit more subtle (there is more mass at the outside), but it doesn't make a big difference. Do the rockets deliver 102 N or 102 N of thrust ?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top