BAC5.2
- 9
- 0
Homework Statement
Given: "In a science museum, a 110 kg brass pendulum bob swings at the end of a 15.0-m-long wire. The pendulum is started at exactly 8:00 a.m. every morning by pulling it 1.5 m to the side and releasing it. Because of its compact shape and smooth surface, the pendulum's damping constant is only 0.010 kg/s."
Questions:
(1) At exactly 12:00 noon, how many oscillations will the pendulum have completed?
(2) And what is its amplitude?
Homework Equations
None Given
The Attempt at a Solution
I used the equation x=A_{}0 e ^{}-(b/2m)t cos( \varpi \acute{} t+\phi)
I used the first bit of the equation to find the exact amplitude t(x) when x=14400 (x=A_{}0e^{}-(b/2m)t to find the amplitude)
But the trouble I'm having is the number of oscillations in the 4 hour period.
I took the angular frequency (\varpi\acute{}) and multiplied that by the number of seconds (14400), but the resulting answer was incorrect. Since \phi=0, taking the cosine of (\varpi\acute{}) gives another answer, but I'm not confident that it is the correct answer, and I don't want to stab in the dark until I get it right.
I'm a bit stuck.
Since this is damped oscillation, and the initial period is greater than one second, the number HAS to be less than 14400.
Any help? Am I on the right track? Is there something I'm missing?
Note: It doesn't seem that the latex is putting superscripts in the correct locations, so please bear with me.
Last edited: