How Many Oscillations and Amplitude of a Damped Pendulum in 4 Hours?

BAC5.2
Messages
9
Reaction score
0

Homework Statement



Given: "In a science museum, a 110 kg brass pendulum bob swings at the end of a 15.0-m-long wire. The pendulum is started at exactly 8:00 a.m. every morning by pulling it 1.5 m to the side and releasing it. Because of its compact shape and smooth surface, the pendulum's damping constant is only 0.010 kg/s."

Questions:

(1) At exactly 12:00 noon, how many oscillations will the pendulum have completed?

(2) And what is its amplitude?

Homework Equations



None Given

The Attempt at a Solution



I used the equation x=A_{}0 e ^{}-(b/2m)t cos( \varpi \acute{} t+\phi)

I used the first bit of the equation to find the exact amplitude t(x) when x=14400 (x=A_{}0e^{}-(b/2m)t to find the amplitude)

But the trouble I'm having is the number of oscillations in the 4 hour period.

I took the angular frequency (\varpi\acute{}) and multiplied that by the number of seconds (14400), but the resulting answer was incorrect. Since \phi=0, taking the cosine of (\varpi\acute{}) gives another answer, but I'm not confident that it is the correct answer, and I don't want to stab in the dark until I get it right.

I'm a bit stuck.

Since this is damped oscillation, and the initial period is greater than one second, the number HAS to be less than 14400.

Any help? Am I on the right track? Is there something I'm missing?

Note: It doesn't seem that the latex is putting superscripts in the correct locations, so please bear with me.
 
Last edited:
Physics news on Phys.org
have a look at the thread in intro physics.
 
Thank you! All solved.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top