How many possible arrangements are there for a deck of 52 playing cards?

  • Thread starter Thread starter Benzoate
  • Start date Start date
  • Tags Tags
    Cards
Benzoate
Messages
418
Reaction score
0

Homework Statement


How many possible arrangements are there for a deck of 52 playing cards?(For simplicity, consider only the order of the cards , not whether they are turned upside down, etc.) suppose you start with a sorted deck and shuffle it repeatedly , so that all possible arrangements becomes accessible? how much entropy have you created in the process? express your answer both as a pure number(neglecting the factor k) and the SI units.Is the entropy significant compared to the entropy asociated with arranging thermal energy among the molecules in the cards?

Homework Equations



S=k*ln(omega), k is neglected in this problem.

omega=(q+N)!/((q)!(N)!)

The Attempt at a Solution



a)How many possible arrangements are there for a deck of 52 playing cards?

the number of arrangements is just N factorial or in my case 52!

b)suppose you start with a sorted deck and shuffle it repeatedly , so that all possible arrangements becomes accessible how much entropy have you created in the process?

so would I just calculate the total number of omega 's: In other words, would I calculate all the posible q's? for instance , omega(q=0)=(0+52)/((0!)(52!)+omega(q=1)=(1+52)/((1!)(52!))+...+omega(q=51)=(51+52)!/((51!)(52!))+omega(q=52)=(52+52)!/((52!)(52!)) and then proceed to take the natural log of all the total sums of the omega's to calculate my entropy?
 
Physics news on Phys.org
I'm not sure where your equation for omega comes from, but omega is supposed to just be the number of possible arrangements. So your increase in entropy is just:

\Delta S = k \left( \ln 52! - \ln 1 \right)
 
genneth said:
I'm not sure where your equation for omega comes from, but omega is supposed to just be the number of possible arrangements. So your increase in entropy is just:

\Delta S = k \left( \ln 52! - \ln 1 \right)

Is my calculation for the total number of arrangements correct? I do not understand how you obtained ln 1.

i obtained my equation for omega on p. 63 of Daniel's V. Schroeder Thermal physics textbook.
 
Last edited:
The number of arrangements is correct. The 1 comes from the fact that there is only one way to arrange the deck in a sorted manner.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top