HOw many solutions does this echelon matrix have? Mine isn't right :\

  • Thread starter Thread starter mr_coffee
  • Start date Start date
  • Tags Tags
    Echelon Matrix
AI Thread Summary
The discussion focuses on determining the number of solutions for various systems represented by reduced row-echelon forms of augmented matrices. The first matrix indicates no solutions due to a contradiction (0 does not equal 1). The second and third matrices yield unique solutions based on the number of equations matching the number of variables. The fourth matrix suggests infinitely many solutions because it contains a row of zeros, indicating an underdetermined system. The user expresses confusion over their initial answers, but after clarification, they confirm their understanding of the solution types.
mr_coffee
Messages
1,613
Reaction score
1
Hello everyone
The reduced row-echelon forms of the augmented matrices of four systems are given below. How many solutions does each system have?
Here is the matrices:
1 0 -12 0
0 1 0 0
0 0 0 1
0 0 0 0

A. Infinitely many solutions
B. No solutions
C. Unique solution
D. None of the above
I said No solutions because 0 does not equal 1

0 1 0 -15
0 0 1 7

A. No solutions
B. Unique solution
C. Infinitely many solutions
D. None of the above

I said Unqiue solution because y = 1, z = 7.

1 0 0 8
0 0 1 0

A. Unique solution
B. Infinitely many solutions
C. No solutions
D. None of the above

I said unique solution because, y = 8, and z = 0;

1 0 11
0 1 9
0 0 0
A. Unique solution
B. No solutions
C. Infinitely many solutions
D. None of the above

I said Infinitely many solutions because you have a line of 0 0 0.
NOw i submitted the answer but it said at least 1 is wrong, so i don't know iif they are all wrong or just 1 of them, any help would be great.
 
Physics news on Phys.org
Since these are the reduced row-echelon forms of the augmented matrices, remember that the last column represents the constant and that every row is still an equation.

After having reduced them, you can leave out all the 0 row's, that means row that have all 0's in every column. These are superfluous.

When you end up with exactly the same number of equations (eq) as variables (var), then there is a unique solution.
If you end up with less eq than var, there will be infinitely many solutions.

But! You have to be careful if you get rows which have 0's for all the coëfficiënts but not 0 in the last column, of the constant. Back translated into an equation, this means something like 0x+0y+0z=c, with c a constant different from 0. That is of course, not possible. In this case, your system has no solutions.
 
thanks! I think i got this right...
So for
1 0 -12 0
0 1 0 0
0 0 0 1

no solutions because 0 != 1

0 1 0 -15
0 0 1 7

unqiue solution

1 0 0 8
0 0 1 0
unqiue solution


1 0 11
0 1 9
0 0 0
Infin. many solutions becuase we got a 0 0 0
 
Although you have a 0-row in the last one, you still end up with an equal amount of unknowns and equations, so that yields a unique solution. You only have infinite solutions if your system is underdeterminate, that means that you end up with more variables than equations so you get to "choose" one or more variables (let x = s etc...)
 
Thanks again TD! it worked fine after a few tries!
 
Great :smile:
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top