How Many States Exist Between E and E+δE in a Spin 1/2 System?

Salterium
Messages
3
Reaction score
0

Homework Statement


Consider an isolated system consisting of a large number N of very weakly interacting localized particles of spin 1/2. Each particle has a magnetic moment \mu which can point either parallel or antiparallel to an applied field H. The energy E of the system is then E = -(n1-n2)\muH, where n1 is the number of spins aligned parallel to H, and n2 is the number of spins aligned antiparallel to H.

(a) Consider the energy range between E and E+\deltaE where \delta is very small compared to E, but is microscopically large so that \deltaE>>\muH What is the total number of states \Omega(E) lying in this energy range?


Homework Equations


I really have no clue.


The Attempt at a Solution


I've been sitting with my small study group talking about this for an hour, and we're no closer to a solution than when we started. We've looked at the answer and it reminds us of the classical "drunken sailor" problem. Trust me when I say we've attempted this solution from every angle we can think of.
 
Physics news on Phys.org
How many states are there with a given/fixed energy, say, 0 or mu_H or mu*H or whatever it is?

After you know that, you'll want to sum up that number for every energy between E and delta E. Since the gap is big enough (delta E >> mu H), you can transform the sum into an integral.
 
Think about the possible number of states that exist between E and delta E. Like your drunken sailor problem, in which different ways could they move? How is that similar to your particles? Could you use a common formula for this situation as you might have used in the drunken sailor?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top