How to Account for Rotational Motion in a Pulley Problem?

danny271828
Messages
34
Reaction score
0
A massless string is placed over a massless pulley, and each end is wound around and fastened to a vertical hoop. The hoops have masses M1 and M2 and radii R1 and R2. The apparatus is placed in a uniform gravitation field g and released with each end of the string aligned along the field.



I have to show that the tension is t = gM1M2/(M1+M2)



I keep getting twice this value.
 
Physics news on Phys.org
danny271828 said:

I keep getting twice this value.

You are getting twice of the value, because you are neglecting the rotational motion of the hoops. The answer you got (twice value) is in the case when hoops are pointlike.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top