How to Calculate Heat Generated by Electric Current in Different Materials?

AI Thread Summary
To calculate heat generated by electric current in different materials, the formula I^2 * R is applicable, but resistance can vary, especially in aqueous solutions or large battery cells. Measuring voltage and current directly provides a more reliable method for determining heat output. Internal resistance in batteries contributes to heating, which can be assessed by observing terminal voltage drop under load. Resistance typically increases with temperature in solid conductors, but materials like carbon and certain semiconductors exhibit the opposite behavior. For maximizing heat generation, using a combination of materials with opposing temperature coefficients can help maintain a more constant resistance, enhancing efficiency in heating applications.
Frostfire
Messages
50
Reaction score
0
Ive posted this a while back but never had a reply,

How does one determine the heat generated from a current? I have found several sources that refer to using "the length of a wire" but how would you calculate it for an aqueous material, or for all intensive purposes a "really large" battery cell. Would = I^2 *R still work?

Also I haven't worked with high current problems before, I remember something about resistance increasing drastically with high current density.
 
Engineering news on Phys.org
If you were forcing current through an aqueous solution, I squared R would work. However, you couldn't predict R and you wouldn't know if it stayed constant.
So, it would be better to just use voltage times current. You can measure these OK.

There are heating effects in a battery but this is due to internal resistances in the leads to the electrodes, and the electrodes themselves, as well as limits in the chemical processes involved.

You can measure this internal resistance in a battery by loading it and noting the drop in terminal voltage. You could then predict the heating using I squared R.

Resistance in a solid conductor does increase with temperature for most substances, although there are some like Carbon and semiconductors, like Silicon and Germanium, that reduce their resistance with temperature.
 
Interesting, so that brings up another question. If to calculate it in an aqueous solution involves working around resistance. If one was trying to minimize heat, use a material that behaves in a manner decreasing resistance with current, and to maximize use one that does the opposite?, That sound right, if incredibly over simplified
 
No, but you could compensate for the CHANGE in resistance of one substance by using a substance of opposite temperature coefficient with it so that you would get more of a constant resistance.

So, if you had one resistor that increased resistance with temperature, you could put another in series with it that decreased resistance with temperature. This could partly cancel out the change resulting in a more constant total resistance with temperature.

Early (Edison) lamps used carbon filaments. These reduced resistance with temperature, meaning they would draw more current and get hotter. This is a sort of runaway process that could destroy the lamp.
Later lamps used metal filaments that increase resistance with temperature, so they tend to protect themselves by drawing less current when they get hot.
Germanium transistors had the same thermal runaway problem and had to be designed into circuits that stopped this effect causing destruction.
 
Thanks for the reply's, I've been off for a while, you know how it is, out of class and work,try to focus on something else for a bit :wink: I hadn't thought about the thermal balance, interesting concept though,

So theory question, If one was trying to maximize the heat generated by a system, say a super electric heater based on high voltage, baring engineering limitations, what would be the best way to set it up to maximize heat induced from a given voltage, at a given amperage as well if required, over a given time?
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top