How to Calculate the Divergence of a Tensor in MHD?

  • Thread starter Thread starter Qyzren
  • Start date Start date
  • Tags Tags
    Divergence
Qyzren
Messages
41
Reaction score
0
Hi guys, trying to solve a problem in MHD, i realized i need to be able to take the divergence of this following integral, but I don't know how to do it.
M is a symmetric rank 2 tensor, r is a vector.

The integral is as follows
\int_{\partial V} (\textbf{r} d \textbf{S} \cdot \textbf{M}+d\textbf{S} \cdot \textbf{Mr})
I need to somehow manipulate this to get \int_V {\{\nabla \cdot \textbf{M})\textbf{r}+\textbf{r}(\nabla \cdot \textbf{M})+2\textbf{M}\}dV}

Thanks
 
Physics news on Phys.org
The divergence theorem states that the divergence of a tensor or vector field over a volume V is equivalent to a surface integral of the inner product of the tensor or vector field with the surface basis vectors. So split the integral into the sum of two integrals and use the divergence theorem to prove the equality.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
7
Views
2K
Replies
4
Views
2K
Replies
4
Views
4K
Replies
1
Views
2K
Replies
19
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
Back
Top