How to Determine Heat Capacity in a Hard-Sphere Gas Simulation?

adriplay
Messages
1
Reaction score
0
I have a simulation with a bunch of particles with volume bouncing around in a box with no interaction between them, a hard-sphere gas. Initially, they all have the same momentum |p|=√(2⋅m⋅2/3⋅k⋅T) to have the average kinetic energy 3/2⋅k⋅T.

I'm asked to add a constant energy flux to the system (I solved it with a for statement that adds a little p contribution to every particle for each iteration) and to calculate the heat capacity at constant volume cv.

As cv is the partial derivative of <E> respect T I want to try plotting the average energy respect T but how I get the T value? I'm doing it right if I consider kT= <E>⋅2/3 knowing that I'm in an ideal approximation? How I could make it work for and interacting gas like Lennard-Jones?
 
Physics news on Phys.org
adriplay said:
I have a simulation with a bunch of particles with volume bouncing around in a box with no interaction between them, a hard-sphere gas. Initially, they all have the same momentum |p|=√(2⋅m⋅2/3⋅k⋅T) to have the average kinetic energy 3/2⋅k⋅T.

I'm asked to add a constant energy flux to the system (I solved it with a for statement that adds a little p contribution to every particle for each iteration) and to calculate the heat capacity at constant volume cv.

As cv is the partial derivative of <E> respect T I want to try plotting the average energy respect T but how I get the T value? I'm doing it right if I consider kT= <E>⋅2/3 knowing that I'm in an ideal approximation? How I could make it work for and interacting gas like Lennard-Jones?
Welcome to PF adriplay!

The average energy per degree of freedom per particle is kT/2. So the average energy per particle associated with the 3 translational degrees of freedom is 3kT/2.

Cv = kT/2 x the total number of degrees of freedom. In order to determine the Cv of the system of particles you have to determine the total number of degrees of freedom of the particles in the system.

Since the particles are hard spheres with a finite volume, how many degrees of rotational freedom would they have?

To find the temperature change, once you get the DOF and ##C_v##, use ##C_v = \frac{\Delta U}{\Delta T}## where ##\Delta U## is the energy added to the system.
AM
 
  • Like
Likes adriplay
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top