How to Determine the Eigenvalues of a Hermitian Operator?

Faust90
Messages
19
Reaction score
0

Homework Statement


I have a hermitian Operator A and a quantum state |Psi>=a|1>+b|2> (so we're an in a two-dim. Hilbert space)
In generally, {|1>,|2>} is not the eigenbasis of the operator A.

I shall now show that the Eigenvaluse of A are the maximal (minimal) expection values <Psi|A|Psi>.

The Attempt at a Solution


I tried to calculate the expectation, which yields to:

|a|^2 A_11 + |b|^2 A_22 +a b* A_12 +b a* A_21

, where A_kl are the matrix elements of the operator A in the given basis of the Hilbert space.
Now I could try to maximize this w.r.t to a and b, under the constraint that a^2 + b^2 =1. Didn't work very well...

Does anyone have an idea?
 
Physics news on Phys.org
Show us what you did and what went wrong!
 
Hey Shyan,

thanks for your answer. I tried to find the maximum by using the Lagrange function, so:

L=|a|^2 A_11 + |b|^2 A_22 +a b* A_12 +b a* A_21+lambda(a^2 + b^2 - 1)

Now I got the problem that I don't know how derive L w.r.t c* (conjugated c). I also think that there is a better way to solve this exercise or?

Best regards
 
Hi
The usual way of dealing with such a situation is to take c and c* as two independent variables(which is reasonable since c* is not a differentiable function of c). So you have a function of four independent variables to maximise with the constraint equation aa*+bb*=1.
 
  • Like
Likes Faust90
Thank you very much! :-)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top