How to Find the Components of the Inertia Tensor Matrix for Point Masses?

lulamuz27
Messages
1
Reaction score
0

Homework Statement


Hi everyone, I need some help to know how to find the components of the inertia tensor matrix of a rigid body formed by a gruop of point masses attached to bars with no mass.
I have 3 masses with cartesian coordenates: 1 (a,a,0), 2 (a,0,0) and 3 (-a,-a-0).





The Attempt at a Solution


The book says: Ixx= 2ma^2, Ixy= -2ma^2, why??


Thank you!
 
Physics news on Phys.org
Welcome to PF!
Do you know the general formulas for the elements of the inertia tensor? That would be a good place to start.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top