How to find the Gateaux differential of this functional?

Click For Summary
SUMMARY

The discussion focuses on finding the Gateaux differential of the functional defined by the integral \( S[y] = \int_{a}^{b}(y'^{2}+\omega^{2}y^{2}+2yx^{4})dx \), with boundary conditions \( y(a) = A \) and \( y(b) = B \). Participants confirm that the correct approach involves differentiating \( S(y+\tau\psi) \) with respect to \( \tau \) and evaluating at \( \tau = 0 \). The final expression for the Gateaux differential is derived as \( \frac{d}{d\tau}S[y+\tau\psi]_{\tau=0} = (b-a)(2y'(x)\psi'(x)+2\psi(x)\omega^{2})+(b^{5}-a^{5})(\frac{2}{5}\psi(x)) \). The discussion emphasizes the importance of applying the chain rule and correctly handling the limits of integration.

PREREQUISITES
  • Understanding of functional analysis and variational calculus
  • Familiarity with the concept of Gateaux differentiability
  • Knowledge of integration techniques, particularly with respect to variable limits
  • Proficiency in calculus, specifically differentiation under the integral sign
NEXT STEPS
  • Study the properties of Gateaux differentials in functional analysis
  • Learn about the application of the chain rule in variational calculus
  • Explore integration by parts techniques in the context of functional integrals
  • Investigate the implications of boundary conditions in variational problems
USEFUL FOR

Mathematicians, physicists, and engineers involved in optimization problems, particularly those working with variational calculus and functional analysis.

Math100
Messages
817
Reaction score
229
Homework Statement
Let ## a<b, A ## and ## B ## be constants.
Find the Gateaux differential of the functional ## S[y]=\int_{a}^{b}(y'^{2}+\omega^{2}y^{2}+2yx^{4})dx, y(a)=A, y(b)=B ##, where ## \omega ## is a positive constant.
Relevant Equations
Suppose ## X ## and ## Y ## are locally convex topological vector spaces, ## U\subseteq X ## is open, and ## F: X\rightarrow Y ##. The Gateaux differential ## dF(u; \psi) ## of ## F ## at ## u\in U ## in the direction ## \psi\in X ## is defined as ## dF(u; \psi)=\lim_{\tau\rightarrow 0}\frac{F(u+\tau\psi)-F(u)}{\tau}=\frac{d}{d\tau}F(u+\tau\psi)\biggr\rvert_{\tau=0} ##. If the limit exists for all ## \psi\in X ##, then one says that ## F ## is Gateaux differentiable at ## u ##.
I am not sure if this is correct, but here is my work by using the definition of the Gateaux differential:
\begin{align*}
&dS(y; \psi)=\lim_{\tau\rightarrow 0}\frac{S(y+\tau\psi)-S(y)}{\tau}=\frac{d}{d\tau}S(y+\tau\psi)\biggr\rvert_{\tau=0}\\
&S(y+\tau\psi)=\int_{a}^{b}[(y+\tau\psi)'^{2}+\omega^{2}(y+\tau\psi)^{2}+2(y+\tau\psi)x^{4}]dx\\
&=[(y+\tau\psi)'^{2}x+\omega^{2}(y+\tau\psi)^{2}x+\frac{2}{5}(y+\tau\psi)x^{5}]_{a}^{b}\\
&=(y+\tau\psi)'^{2}(b-a)+\omega^{2}(y+\tau\psi)^{2}(b-a)+[\frac{2}{5}(y+\tau\psi)](b^{5}-a^{5})\\
\end{align*}
Thus ## S(y+\tau\psi)\biggr\rvert_{\tau=0}=y'^{2}(b-a)+\omega^{2}y^{2}(b-a)+\frac{2}{5}y(b^{5}-a^{5}) ##.
So ## \frac{d}{d\tau}S(y+\tau\psi)\biggr\rvert_{\tau=0}=0 ##.

Can anyone please check/verify/confirm this?
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Let ## a<b, A ## and ## B ## be constants.
Find the Gateaux differential of the functional ## S[y]=\int_{a}^{b}(y'^{2}+\omega^{2}y^{2}+2yx^{4})dx, y(a)=A, y(b)=B ##, where ## \omega ## is a positive constant.
Relevant Equations:: Suppose ## X ## and ## Y ## are locally convex topological vector spaces, ## U\subseteq X ## is open, and ## F: X\rightarrow Y ##. The Gateaux differential ## dF(u; \psi) ## of ## F ## at ## u\in U ## in the direction ## \psi\in X ## is defined as ## dF(u; \psi)=\lim_{\tau\rightarrow 0}\frac{F(u+\tau\psi)-F(u)}{\tau}=\frac{d}{d\tau}F(u+\tau\psi)\biggr\rvert_{\tau=0} ##. If the limit exists for all ## \psi\in X ##, then one says that ## F ## is Gateaux differentiable at ## u ##.

I am not sure if this is correct, but here is my work by using the definition of the Gateaux differential:
\begin{align*}
&dS(y; \psi)=\lim_{\tau\rightarrow 0}\frac{S(y+\tau\psi)-S(y)}{\tau}=\frac{d}{d\tau}S(y+\tau\psi)\biggr\rvert_{\tau=0}\\
&S(y+\tau\psi)=\int_{a}^{b}[(y+\tau\psi)'^{2}+\omega^{2}(y+\tau\psi)^{2}+2(y+\tau\psi)x^{4}]dx\\
&=[(y+\tau\psi)'^{2}x+\omega^{2}(y+\tau\psi)^{2}x+\frac{2}{5}(y+\tau\psi)x^{5}]_{a}^{b}\\
&=(y+\tau\psi)'^{2}(b-a)+\omega^{2}(y+\tau\psi)^{2}(b-a)+[\frac{2}{5}(y+\tau\psi)](b^{5}-a^{5})\\
\end{align*}
Thus ## S(y+\tau\psi)\biggr\rvert_{\tau=0}=y'^{2}(b-a)+\omega^{2}y^{2}(b-a)+\frac{2}{5}y(b^{5}-a^{5}) ##.
So ## \frac{d}{d\tau}S(y+\tau\psi)\biggr\rvert_{\tau=0}=0 ##.

Can anyone please check/verify/confirm this?
I'm not all that familiar with the Gateaux differential.

It seems to me that you need to first do the differentiation, ##\dfrac{d}{d\tau} S(y+\tau\psi)##, then evaluate the result at ##\tau =0##.
 
Math100 said:
Homework Statement:: Let ## a<b, A ## and ## B ## be constants.
Find the Gateaux differential of the functional ## S[y]=\int_{a}^{b}(y'^{2}+\omega^{2}y^{2}+2yx^{4})dx, y(a)=A, y(b)=B ##, where ## \omega ## is a positive constant.
Relevant Equations:: Suppose ## X ## and ## Y ## are locally convex topological vector spaces, ## U\subseteq X ## is open, and ## F: X\rightarrow Y ##. The Gateaux differential ## dF(u; \psi) ## of ## F ## at ## u\in U ## in the direction ## \psi\in X ## is defined as ## dF(u; \psi)=\lim_{\tau\rightarrow 0}\frac{F(u+\tau\psi)-F(u)}{\tau}=\frac{d}{d\tau}F(u+\tau\psi)\biggr\rvert_{\tau=0} ##. If the limit exists for all ## \psi\in X ##, then one says that ## F ## is Gateaux differentiable at ## u ##.

I am not sure if this is correct, but here is my work by using the definition of the Gateaux differential:<br /> \begin{align*}<br /> &amp;dS(y; \psi)=\lim_{\tau\rightarrow 0}\frac{S(y+\tau\psi)-S(y)}{\tau}=\frac{d}{d\tau}S(y+\tau\psi)\biggr\rvert_{\tau=0}\\<br /> &amp;S(y+\tau\psi)=\int_{a}^{b}[(y+\tau\psi)&#039;^{2}+\omega^{2}(y+\tau\psi)^{2}+2(y+\tau\psi)x^{4}]dx\\<br /> &amp;=[(y+\tau\psi)&#039;^{2}x+\omega^{2}(y+\tau\psi)^{2}x+\frac{2}{5}(y+\tau\psi)x^{5}]_{a}^{b}<br /> \end{align*}

No. y and \psi are arbitrary functions of x satisfying y(a) = A, y(b) = B and \psi(a) = \psi~(b) = 0. You can't actually evaluate the integral because you don't know what y and \psi are. Instead you must bring the differentiation with respect to \tau inside the integral, where it becomes a partial derivative at constant x.
 
pasmith said:
No. y and \psi are arbitrary functions of x satisfying y(a) = A, y(b) = B and \psi(a) = \psi~(b) = 0. You can't actually evaluate the integral because you don't know what y and \psi are. Instead you must bring the differentiation with respect to \tau inside the integral, where it becomes a partial derivative at constant x.
Do you mean ## S(y+\tau\psi)=\int_{a}^{b}\frac{d}{d\tau}(y'^{2}+\omega^{2}y^{2}+2yx^{4})dx ##? If so, then how to evaluate this?
 
Math100 said:
Do you mean ## S(y+\tau\psi)=\int_{a}^{b}\frac{d}{d\tau}(y'^{2}+\omega^{2}y^{2}+2yx^{4})dx ##? If so, then how to evaluate this?

\begin{split}<br /> S[y + \tau \psi] &amp;= \int_a^b (y(x)&#039; + \tau \psi(x)&#039;)^2 + \omega^2(y(x) + \tau\psi(x))^2 + 2(y(x) + \tau \psi(x))x^4\,dx \\<br /> \left.\frac{d}{d\tau} S[y + \tau \psi]\right|_{\tau=0} &amp;= <br /> \int_a^b \left.\frac{\partial}{\partial \tau}\left(((y&#039;(x) + \tau\psi&#039;(x))^2 + \omega^2(y(x) + \tau\psi(x))^2 + 2(y(x) + \tau\psi(x))x^4\right)\right|_{\tau=0}\,dx. \end{split} Again, you need to calculate the (partial) derivative with respect to \tau and then set \tau = 0. \left.\dfrac{df}{dt}\right|_{t=t_0} is how we indicate where the derivative is to be evaluated using Leibnitz's notation; with Newton's notation we would just write f&#039;(t_0).
 
Last edited:
pasmith said:
\begin{split}<br /> S[y + \tau \psi] &amp;= \int_a^b (y(x)&#039; + \tau \psi(x)&#039;)^2 + \omega^2(y(x) + \tau\psi(x))^2 + 2(y(x) + \tau \psi(x))x^4\,dx \\<br /> \left.\frac{d}{d\tau} S[y + \tau \psi]\right|_{\tau=0} &amp;=<br /> \int_a^b \left.\frac{\partial}{\partial \tau}\left(((y&#039;(x) + \tau\psi&#039;(x))^2 + \omega^2(y(x) + \tau\psi(x))^2 + 2(y(x) + \tau\psi(x))x^4\right)\right|_{\tau=0}\,dx. \end{split} Again, you need to calculate the (partial) derivative with respect to \tau and then set \tau = 0. \left.\dfrac{df}{dt}\right|_{t=t_0} is how we indicate where the derivative is to be evaluated using Leibnitz's notation; with Newton's notation we would just write f&#039;(t_0).
After breaking down into smaller pieces, I got the following:
\begin{align*}
&(y'(x)+\tau\psi'(x))^{2}=y'^{2}(x)+2y'(x)\tau\psi'(x)+\tau^{2}\psi'^{2}(x)\\
&\omega^{2}(y(x)+\tau\psi(x))^{2}=\omega^{2}y^{2}(x)+2\tau\psi(x)\omega^{2}+\omega^{2}\tau^{2}\psi^{2}(x)\\
&2(y(x)+\tau\psi(x))x^{4}=2x^{4}y(x)+2x^{4}\tau\psi(x)\\
&\frac{d}{d\tau}[(y(x)'+\tau\psi(x)')^{2}]=2y'(x)\psi'(x)+2\tau\psi'^{2}(x)\\
&\frac{d}{d\tau}[\omega^{2}(y(x)+\tau\psi(x))^{2}]=2\psi(x)\omega^{2}+2\omega^{2}\tau\psi^{2}(x)\\
&\frac{d}{d\tau}[2(y(x)+\tau\psi(x))x^{4}]=2x^{4}\psi(x)\\
\end{align*}
So
\begin{align*}
&\frac{d}{d\tau}S[y+\tau\psi]_{\tau=0}\\
&=[2y'(x)\psi'(x)+2\tau\psi'^{2}(x)+2\psi(x)\omega^{2}+2\omega^{2}\tau\psi^{2}(x)+2x^{4}\psi(x)]_{\tau=0}\\
&=2y'(x)\psi'(x)+2\psi(x)\omega^{2}+2x^{4}\psi(x).\\
\end{align*}
Thus
\begin{align*}
&\int_{a}^{b}[2y'(x)\psi'(x)+2\psi(x)\omega^{2}+2x^{4}\psi(x)]dx\\
&=[2xy'(x)\psi'(x)+2x\psi(x)\omega^{2}+\frac{2}{5}x^{5}\psi(x)]_{a}^{b}\\
&=[2by'(x)\psi'(x)+2b\psi(x)\omega^{2}+\frac{2}{5}b^{5}\psi(x)]-[2ay'(x)\psi'(x)+2a\psi(x)\omega^{2}+\frac{2}{5}a^{5}\psi(x)]\\
&=(b-a)(2y'(x)\psi'(x)+2\psi(x)\omega^{2})+(b^{5}-a^{5})(\frac{2}{5}\psi(x)).\\
\end{align*}
Thus
\begin{align*}
&\frac{d}{d\tau}S[y+\tau\psi]_{\tau=0}=(b-a)(2y'(x)\psi'(x)+2\psi(x)\omega^{2})+(b^{5}-a^{5})(\frac{2}{5}\psi(x)).\\
\end{align*}
Is this correct?
 
Math100 said:
After breaking down into smaller pieces, I got the following:
\begin{align*}
&(y'(x)+\tau\psi'(x))^{2}=y'^{2}(x)+2y'(x)\tau\psi'(x)+\tau^{2}\psi'^{2}(x)\\
&\omega^{2}(y(x)+\tau\psi(x))^{2}=\omega^{2}y^{2}(x)+2\tau\psi(x)\omega^{2}+\omega^{2}\tau^{2}\psi^{2}(x)\end{align*}

You are missing a y(x) from the second term on the right on the last line. But it is easier to use the chain rule rather than multiply everything out: \frac{\partial}{\partial \tau} (y(x) + \tau \psi(x)&#039;)^2 = 2(y&#039;(x) + \tau \psi&#039;(x))\psi&#039;(x) etc.

Thus
\begin{align*}

&\int_{a}^{b}[2y'(x)\psi'(x)+2\psi(x)\omega^{2}+2x^{4}\psi(x)]dx\\

&=[2xy'(x)\psi'(x)+2x\psi(x)\omega^{2}+\frac{2}{5}x^{5}\psi(x)]_{a}^{b}\\

&=[2by'(x)\psi'(x)+2b\psi(x)\omega^{2}+\frac{2}{5}b^{5}\psi(x)]-[2ay'(x)\psi'(x)+2a\psi(x)\omega^{2}+\frac{2}{5}a^{5}\psi(x)]\\

&=(b-a)(2y'(x)\psi'(x)+2\psi(x)\omega^{2})+(b^{5}-a^{5})(\frac{2}{5}\psi(x)).\\

\end{align*}

Aside from the factor of y(x) missing from the second term, the first line is essentially correct. But the rest is wrong. You have a definite integral with respect to x; its value should therefore not depend on x, but should be a function of the limits a and b. However, you can't evaluate the integral since you don't know how the integrand depends on x (because you don't know what y and \psi are). It is not in general true that \int_a^b xy(x)\,dx = by(b) - ay(a).

The most you can do is integrate the first term by parts to get <br /> \int_a^b 2y&#039;(x)\psi&#039;(x) + 2\omega^2y(x)\psi(x) + 2x^4 \psi(x)\,dx = 2 \int_a^b \left(-y&#039;&#039;(x) + \omega^2y(x) + x^4\right)\psi(x)\,dx + 2\left[y&#039;(x)\psi(x)\right]_a^b but that is as far as you can go.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K