How to Isolate L in a Tricky Equation?

  • Thread starter Thread starter physics7889
  • Start date Start date
physics7889
Messages
7
Reaction score
0

Homework Statement


Isolate for L.

-Lsinx=Lsinx -[4.9Lsinx/sqroot(19.6h)]

The Attempt at a Solution



-Lsinx=Lsinx -[4.9Lsinx/sqroot(19.6h)]
 
Physics news on Phys.org
Have you tried anything?
 
thats actually how far i got before i got stuck...
 
Try factoring an L out of both sides
 
i got L=4.9/[sinx times sqroot(19.6H)]

but i don't noe if that's right or not
 
physics7889 said:

Homework Statement


Isolate for L.

-Lsinx=Lsinx -[4.9Lsinx/sqroot(19.6h)]

The Attempt at a Solution



-Lsinx=Lsinx -[4.9Lsinx/sqroot(19.6h)]

I think you made a mistake before this. It's not possible to solve for L in this equation.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top