How to solve a Sum of Forces Problem with Two Springs and Varied Masses?

  • Thread starter Thread starter simplemail1
  • Start date Start date
  • Tags Tags
    Forces Sum
AI Thread Summary
The discussion focuses on solving a physics problem involving two springs and varied masses. Key aspects include calculating the compression of the spring, frequency of oscillation, and maximum amplitude after contact. Participants emphasize using Newton's second law (F=ma) and conservation of energy to derive solutions, noting the importance of distinguishing between the spring's natural length and its position at rest. There is some confusion regarding the problem's wording, particularly whether it asks for the equilibrium position or the maximum compression during oscillation. Clarifying the problem statement is suggested to ensure accurate solutions.
simplemail1
Messages
3
Reaction score
0
1. The problem statement, all variables and given/known

Homework Statement


There is a spring with two crates, (5kg +3 kg) as shown in this picture. (1)
The spring constant is 1000 n/m.

I need to find
a) How much the spring is compressed from its initial position (at rest)
b) The frequency of the oscillation
c) Max amplitude after contact

And then there is a different spring, oscillating horizontally with 2 boxes on top of each other, m1 on m2. The maximum force of friction is define as f.

I need to find the a) max horizontal acceleration for the m1 not to slip on m2 and I need to find the b) max amplitude for simple harmonic motion without m1 slipping. I'm not given any numbers whatsoever.

The Attempt at a Solution



For a) I would think I would do (8)(9.8) and then do that against the force of the constant
b) I think I would use w (frequency?) = (k/m)^1/2.
c) I'm not too sure on this

I don't know what to do afterwards (or at all) for the second spring
 

Attachments

  • 1.JPG
    1.JPG
    4.6 KB · Views: 418
Last edited:
Physics news on Phys.org
Any advice to kick me off?
 
Hi simplemail1,

For part a of the first problem, you can definitely use the sum of the forces; however, the acceleration is not zero so you would need to be able to tell what the acceleration is and set the sum of the forces equal to ma. As an alternative, I would try using conservation of energy to find the answer.
 
Hi,

Exactly, all of these questions can be solved from the Newton's equation F=ma.
a) In this case, the equilibrium position is asked, so a=0 and sum of forces=0. In the sum of forces, you have the gravitation force mg and the reaction of the spring k(l-l0). In those kind of problems always be aware of the difference between the position at rest and the natural length of the spring l0 that are different due to the gravitation
b) F=ma allows you to obtain the differential equation of movement, mx''+kx=0 so you can have the pulsation
c) solving the differential equation allows you to have x(t), x'(t) and x''(t), which all will be sinusoidal functions... It is easy to have their maximum

For the second spring, always the same problem, but the forces will be different: no gravitation, but friction force.
 
Hi jonpoux,

jonpoux said:
Hi,

Exactly, all of these questions can be solved from the Newton's equation F=ma.
a) In this case, the equilibrium position is asked, so a=0 and sum of forces=0. In the sum of forces, you have the gravitation force mg and the reaction of the spring k(l-l0). In those kind of problems always be aware of the difference between the position at rest and the natural length of the spring l0 that are different due to the gravitation

The wording of the question is not too clear, but I don't think they are asking for the equilibrium position in this problem. They are setting up an oscillation so I think they want the maximum distance the spring is compressed from it's initial position during the oscillation.


simplemail,

It doesn't look like you typed in the complete statement of the problem. It might be best if you type in everything the problem said; little details can make a big difference.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top