Captain Zappo
- 17
- 0
Hi everyone. I'm having some trouble evaluating the following integral
<br /> \int{sin^4xdx}<br />
First let me start off by showing what I did.
<br /> = \int{(sin^2x)(sin^2x)dx}<br />
<br /> =\int{[\frac{1}{2}-\frac{1}{2}cos(2x)] \ [\frac{1}{2}-\frac{1}{2}cos(2x)]dx<br />
<br /> =\int{(\frac{1}{4}-cos(2x)+\frac{1}{4}cos^2(2x))dx<br />
<br /> =\frac{1}{4}x-\frac{1}{2}sin(2x)+\frac{1}{4}\int{(\frac{1}{2}+\frac{1}{2}cos(4x))dx<br />
<br /> =\frac{1}{4}x-\frac{1}{2}sin(2x)+\frac{1}{8}x+\frac{1}{8}\int{cos(4x)}dx<br />
<br /> =\frac{1}{4}x-\frac{1}{2}sin(2x)+\frac{1}{8}x+\frac{1}{32}sin(4x)+C<br />
I'm not sure if I have the right answer or not, so could someone please check and see if I did anything illegal. If so, can you please correct me, or even show me a different method entirely.
Thanks,
-Zach
<br /> \int{sin^4xdx}<br />
First let me start off by showing what I did.
<br /> = \int{(sin^2x)(sin^2x)dx}<br />
<br /> =\int{[\frac{1}{2}-\frac{1}{2}cos(2x)] \ [\frac{1}{2}-\frac{1}{2}cos(2x)]dx<br />
<br /> =\int{(\frac{1}{4}-cos(2x)+\frac{1}{4}cos^2(2x))dx<br />
<br /> =\frac{1}{4}x-\frac{1}{2}sin(2x)+\frac{1}{4}\int{(\frac{1}{2}+\frac{1}{2}cos(4x))dx<br />
<br /> =\frac{1}{4}x-\frac{1}{2}sin(2x)+\frac{1}{8}x+\frac{1}{8}\int{cos(4x)}dx<br />
<br /> =\frac{1}{4}x-\frac{1}{2}sin(2x)+\frac{1}{8}x+\frac{1}{32}sin(4x)+C<br />
I'm not sure if I have the right answer or not, so could someone please check and see if I did anything illegal. If so, can you please correct me, or even show me a different method entirely.
Thanks,
-Zach
Last edited: