Induced emf and flux in a transformer, conceptual question

AI Thread Summary
The discussion centers on the induced electromotive force (emf) in transformers due to magnetization current, specifically whether the emf arises from the electric field in the core or the coil. It is clarified that the back emf primarily results from the electric field in the coil, while the core also experiences an induced electric field that is negligible in circuit analysis. The concept of mutual induction is explored, indicating that the continuous induction of electric and magnetic fields can lead to electromagnetic radiation, which carries energy away from the transformer. This radiation must be accounted for in transformer analysis, particularly regarding the power needed from the source to overcome the back emf. Overall, understanding these dynamics is crucial for accurate transformer performance evaluation.
Kale
Messages
3
Reaction score
0
Hey Folks, I am a third year electrical engineering student and just want to clarify a concept involving electromagnetics/transformers.

When supplying magnetization current to a transformer (assume sinusoidal), this induces a time changing magnetic flux in the core. The time changing magnetic flux then induces an emf.

1) Is this emf a result of an induced electric field in the core of the transformer, or in the coil?
-Since the core and coil are both conductors, would it be both? I understand eddy currents trying to oppose the change in flux, so we may ignore that.

2) Would this emf (therefore electric field) induce another magnetic field, then the magnetic field induces an electric field on and on and on?
-Since we can infinitely differentiate a sinusoid, there should be an infinite succession of mutual induction.

3) If 2) is the case, how do we take that into consideration when analyzing a transformer?

∇×E = -dB/dt and e(ind) = -Nd\phi/dt

Thank you!
 
Engineering news on Phys.org
I originally posted this in the electrical engineering section, thought it would be appropriate here as well.

Hey Folks, I am a third year electrical engineering student and just want to clarify a concept involving electromagnetics/transformers.

When supplying magnetization current to a transformer (assume sinusoidal), this induces a time changing magnetic flux in the core. The time changing magnetic flux then induces an emf.

1) Is this emf a result of an induced electric field in the core of the transformer, or in the coil?
-Since the core and coil are both conductors, would it be both? I understand eddy currents trying to oppose the change in flux, so we may ignore that.

2) Would this emf (therefore electric field) induce another magnetic field, then the magnetic field induces an electric field on and on and on?
-Since we can infinitely differentiate a sinusoid, there should be an infinite succession of mutual induction.

3) If 2) is the case, how do we take that into consideration when analyzing a transformer?

∇×E = -dB/dt and e(ind) = -Ndϕ/dt

Thank you!
 
Kale said:
1) Is this emf a result of an induced electric field in the core of the transformer, or in the coil?
-Since the core and coil are both conductors, would it be both? I understand eddy currents trying to oppose the change in flux, so we may ignore that.

The back emf is due to the induced electric field in the coil. You will also get an electric field in the core of the transformer, but this is not part of the circuit containing the power source (the coils are electrically insulated from the core).

Kale said:
2) Would this emf (therefore electric field) induce another magnetic field, then the magnetic field induces an electric field on and on and on?
-Since we can infinitely differentiate a sinusoid, there should be an infinite succession of mutual induction.

Yes. The "on and on and on" is electromagnetic radiation, which caries away some energy from the transformer at the frequency of the current.

Kale said:
3) If 2) is the case, how do we take that into consideration when analyzing a transformer?

∇×E = -dB/dt and e(ind) = -Ndϕ/dt

You can treat the transformer as an oscillating magnetic dipole. There is a standard formula for the power radiated by a changing magnetic dipole (http://www.scribd.com/doc/56933596/66/Radiated-power-magnetic-dipole-radiation here), though it's most easily derived in the relativistically covariant formulation of Maxwell's equations. Obviously, this power needs to be provided by the power source to your circuit and hence solving for voltage in ##P=IV## will tell you the total back emf corresponding to radiation that your transformer has to overcome. Magnetic dipole radiation goes as the fourth power of frequency (as you can see from that formula if you substitute in a sinusoidal magnetic moment) and so will be extremely small at the standard (in North America) current frequency of 60Hz.
 
Last edited:
Is this emf a result of an induced electric field in the core of the transformer, or in the coil?

Why do you think the induced EMF is a result of an electric field, not a magnetic one?

You do understand Lenz' Law?
 
I do understand Lenz' Law, sorry I should have made myself more clear. An induced emf arises to reduce the change in magnetic flux in a by conductor, in this case the conductors would be the coil and the core.

The fact that there is an induced emf indicates that there is an electric field, the emf used in transformer analysis applies to the coil.

Because the core is also conducting, the changing flux will also induce emf in the core, but this is negligible in transformer analysis?
 
Kale said:
Because the core is also conducting, the changing flux will also induce emf in the core, but this is negligible in transformer analysis?

I answered this above: the core is not connected to the powered circuit so the induced electric field in it doesn't contribute to the back emf.

Edit: Ah, it looks like your two threads were merged, maybe that's why you didn't see my first reply.
 
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Back
Top