- 280

- 28

**1. Homework Statement**

Hi, I would just like to know if I'm on the right track with this one.

I have two identical particles with a radius R and mass M. One is at rest and the other moves directly down with a velocity v0. The second particle hits the first particle slightly offset, so that the angle between the horizontal and the line connecting the centers of mass is theta. The collision is perfectly inelastic. The moment of inertia around the center of mass for one particle is Ic, and around the center of mass of the combined particles I.

a) what is the velocity v1 after the collision?

b) what is the angular velocity omega1 after the collision?

**2. Homework Equations**

Inelastic collision: [tex]m_a\vec{v}_{a0} + m_b\vec{v}_{b0} = (m_a + m_b)\vec{v}_1[/tex]

Angular momentum: [tex]L = I\omega[/tex]

Angular momentum of a particle: [tex]L = mvr\sin\phi[/tex]

Conservation of angular momentum: [tex]L_0 = L_1[/tex] or [tex]I_0\omega_0 = I_1\omega_1[/tex]

**3. The Attempt at a Solution**

a) I just use the equation for inelastic collision and get [tex]\vec{v}_1 = \frac{1}{2}\vec{v}_0[/tex], or?

b) Since the first particle is said to be at rest, and the assignment doesn't mention what the angular velocity of each particle is before the collision, I'll assume that neither is rotating before the collision. So, I'm thinking I can find the angular momentum pre-collision by modeling the second particle as a point mass 2R away from the center of the first, and this would be L0, so that [tex]L_0 = mvr sin\phi = 2mv_0R sin\phi[/tex]. Using some trigonometric argument I'll find an expression for phi based on theta (I don't expect to have a problem with this). I then use conservation of angular momentum and solve for omega1. Does this sound right?