Inelastic Collision: Threshold Energy

AI Thread Summary
The discussion focuses on calculating the threshold energy (E0threshold) required for a helium nucleus to induce a nuclear reaction in a lithium target, resulting in the production of boron and a neutron. The threshold energy is determined to be 4.4 MeV, with the energy of the emitted neutrons at this threshold calculated to be 0.15 MeV. Additionally, it is noted that when the incident energy is within a specific range (E0threshold < E0 < E0threshold + 0.27 MeV), the neutrons produced will have two distinct energy values rather than a uniform energy. The calculations involve using the center of mass system to derive velocities and energies, confirming the method's validity for determining threshold conditions. The discussion concludes with a focus on deriving equations that relate neutron energy to initial energy for further analysis.
a.man
Messages
8
Reaction score
0

Homework Statement



A thin target of lithium is bombarded by helium nuclei of energy E0. The lithium nuclei are initially at rest in the target but are essentially unbound. When a Helium nucleus enters a lithium nucleus, a nuclear reaction can occur in which the compound necleus splits apart into a boron nucleus and a neutron. The collision is inelastic, and the final kinetic energy is less than E0 by 2.8 MeV. The relative masses of the particles are: helium, mass 4; lithium, mass 7; boron, mass 10; neutron, mass 1. The reaction can be symbolized:
7Li+4He→10B+1n −2.8MeVa. What is E0threshold the minimum value of E0 for which neutrons can be produced? What is the energy of the neutrons at this threshold?

b. Show that if the incident energy falls in the range E0threshold<E0<E0threshold+0.27 MeV, the neutrons ejected in the forward direction do not all have the same energy, but must have either on or the other of two possible energies. (You can understand the origin of the two groups by looking at the reaction in the center of mass system.)

Homework Equations



E = Ef + 2.8

pi=pf

The Attempt at a Solution



I've tried solving the equations through the laboratory system, but for that I have to make an assumption that the angles of scattering are zero (and even then I'm not sure how to do it). Using the center of mass system, I get:

7vHe - 4vL = 10vB - vN = 11vCM
7vHe = 4vL
10vB = vN
E0 = 49m2vHe2 (\frac{1}{14m}+\frac{1}{8m}) = 1m2vN2 (\frac{1}{20m}+\frac{1}{2m})All the above equations were made from my knowledge of calculations in the system. However, I'm not sure how these would lead to getting the threshold energy...
 
Last edited:
Physics news on Phys.org
Right, I figured how to do the first part:

In center of mass system, the final particle's velocities will be zero respective to the center of mass (they will be the same speed), since this is threshold energy.

So final energy is zero and initial energy is 2.8 MeV (The fact that system has the lowest energy of inertial reference frames can be used too). Using the above equations, we can find velocity of helium in the center of mass system.

Thus, we can find its velocity in the laboratory system, and therefore calculate the initial energy in this system, which is the E0threshold we need to find (4.4 MeV).

Now use the fact that the Boron and the neutron are of the same speed to substitute in a conservation of energy reaction (now in lab system) to get the energy of a neutron (which is 0.15 MeV).

I got the right answers, so I'm thinking this method is right...

For the second part, I assume I have to find an equation that expresses energy of a neutron in terms of initial energy?
 
Last edited:
Okay, I got the second answer as well, so never mind this. (Unless anyone else has the sam problem, I guess...?)

You DID have to get an equation of the velocity of neutrons in terms of initial energy, find for which values of energy will lead to a REAL, POSITIVE value of the velocity in the laboratory system.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top