MHB Inertia matrix from orbital angular momentum of the ith element (please check)

Click For Summary
The discussion focuses on deriving the inertia matrix from the orbital angular momentum of the ith element. The formula for angular momentum is presented as $\vec{L}_I = m_i \vec{r}_i \times (\omega \times \vec{r}_i)$, leading to the conclusion that the inertia matrix can be expressed as $I = m_i \vec{r}^2_i$. Participants clarify the notation, emphasizing the importance of using subscripts correctly and confirming that $m_i$ can be moved within the expression since it is a scalar. The final form of the inertia matrix is discussed, indicating that it is diagonal with elements $I_{ii} = m_i \vec{r}_i \cdot \vec{r}_i$. The conversation highlights the relationship between angular momentum and the inertia matrix in the context of matrices and eigenvalues.
ognik
Messages
626
Reaction score
2
Starting with the orbital angular momentum of the ith element of mass, $ \vec{L}_I = \vec{r}_I \times \vec{p}_I = m_i \vec{r}_i \times \left( \omega \times \vec{r}_i\right) $, derive the inertia matrix such that
$\vec{L} =I\omega, |\vec{L} \rangle = I |\vec{\omega} \rangle $

I used a X b X c = -c X a X b:

$ \vec{L}_i = -m_i \left( \vec{r}_i \times \vec{r}_i \times \omega \right) $

Using bac-cab, $ \vec{L}_i = -m_i \left( \vec{r}_i \left( \vec{r}_i \cdot \omega \right) -\vec{\omega}\left( \vec{r}_i \cdot\vec{r}_i \right) \right)$ and $\vec{r}_i \cdot \vec{\omega} = 0$ (orthogonal), so $ \vec{L}_I = m_i \left( \vec{\omega}\left( \vec{r}_i \cdot\vec{r}_i \right) \right)$ and $ I =m_i \vec{r}^2_i $ ...

That look right ?
 
Physics news on Phys.org
ognik said:
Starting with the orbital angular momentum of the ith element of mass, $ \vec{L}_I = \vec{r}_I \times \vec{p}_I = m_i \vec{r}_i \times \left( \omega \times \vec{r}_i\right) $, derive the inertia matrix such that
$\vec{L} =I\omega, |\vec{L} \rangle = I |\vec{\omega} \rangle $

I used a X b X c = -c X a X b:

$ \vec{L}_i = -m_i \left( \vec{r}_i \times \vec{r}_i \times \omega \right) $

Using bac-cab, $ \vec{L}_i = -m_i \left( \vec{r}_i \left( \vec{r}_i \cdot \omega \right) -\vec{\omega}\left( \vec{r}_i \cdot\vec{r}_i \right) \right)$ and $\vec{r}_i \cdot \vec{\omega} = 0$ (orthogonal), so $ \vec{L}_I = m_i \left( \vec{\omega}\left( \vec{r}_i \cdot\vec{r}_i \right) \right)$ and $ I =m_i \vec{r}^2_i $ ...

That look right ?
Two comments. When you use I as the moment of inertia please exclusively (if you can) use i to indicate the ith particle. [math]L_I[/math] is somewhat unclear. Also, you have a typo: The last expression should be [math]\vec{L}_i = \vec{ \omega } ~ m_i ( \vec{r}_i \cdot \vec{r} _i )[/math].

-Dan
 
Hi - that I subscript is an annoying auto-correct in browsers (unless it is in this editor?) , which I haven't figured out how to turn off - normally I catch them all...

I am not sure my conclusion that $r_i$ and $\omega$ are orthog. is valid?

Please confirm, in that last expression, because $m_i$ is scalar it can be moved anywhere in the term?

This is a section on matrices & eigenvalues, so I'd like a matrix solution for I, something like $ \begin{bmatrix}L_1\\L_2\\L_3\end{bmatrix} = \begin{bmatrix}I_{11}&I_{12}&I_{13}\\I_{21}&...\\...&&I_{33}\end{bmatrix} \begin{bmatrix}\omega_1\\ \omega_2\\ \omega_3\end{bmatrix} $ but I'm struggling to figure out the I elements from the 2 term eqtn I got (assuming r & $\omega$ orthog. that is)
 
ognik said:
I am not sure my conclusion that $r_i$ and $\omega$ are orthog. is valid?
Yeah, autocorrect features are a pain in the pahtootie.

[math]\vec{r}[/math] and [math]\vec{\omega}[/math] are defined to be perpendicular. Note though, that both can be functions of position or time.

ognik said:
Please confirm, in that last expression, because $m_i$ is scalar it can be moved anywhere in the term?
Correct.

ognik said:
This is a section on matrices & eigenvalues, so I'd like a matrix solution for I, something like $ \begin{bmatrix}L_1\\L_2\\L_3\end{bmatrix} = \begin{bmatrix}I_{11}&I_{12}&I_{13}\\I_{21}&...\\...&&I_{33}\end{bmatrix} \begin{bmatrix}\omega_1\\ \omega_2\\ \omega_3\end{bmatrix} $ but I'm struggling to figure out the I elements from the 2 term eqtn I got (assuming r & $\omega$ orthog. that is)
You have one. Rewrite the expression as [math]L_i = \left ( m_i \vec{r}_i \cdot \vec{r}_i \right ) \omega _i[/math]. This is now of the form: [math]\vec{L} = I \vec{\omega}[/math] where [math]I_{ii} = m_i~ \vec{r}_i \cdot \vec{r}_i[/math], to be explicit. Since the matrix elements [math]I_{ij}[/math], where i and j aren't equal, don't appear in the expressions then I is diagonal.

-Dan
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
814
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 62 ·
3
Replies
62
Views
8K
  • · Replies 12 ·
Replies
12
Views
2K