MHB Inertia matrix from orbital angular momentum of the ith element (please check)

ognik
Messages
626
Reaction score
2
Starting with the orbital angular momentum of the ith element of mass, $ \vec{L}_I = \vec{r}_I \times \vec{p}_I = m_i \vec{r}_i \times \left( \omega \times \vec{r}_i\right) $, derive the inertia matrix such that
$\vec{L} =I\omega, |\vec{L} \rangle = I |\vec{\omega} \rangle $

I used a X b X c = -c X a X b:

$ \vec{L}_i = -m_i \left( \vec{r}_i \times \vec{r}_i \times \omega \right) $

Using bac-cab, $ \vec{L}_i = -m_i \left( \vec{r}_i \left( \vec{r}_i \cdot \omega \right) -\vec{\omega}\left( \vec{r}_i \cdot\vec{r}_i \right) \right)$ and $\vec{r}_i \cdot \vec{\omega} = 0$ (orthogonal), so $ \vec{L}_I = m_i \left( \vec{\omega}\left( \vec{r}_i \cdot\vec{r}_i \right) \right)$ and $ I =m_i \vec{r}^2_i $ ...

That look right ?
 
Physics news on Phys.org
ognik said:
Starting with the orbital angular momentum of the ith element of mass, $ \vec{L}_I = \vec{r}_I \times \vec{p}_I = m_i \vec{r}_i \times \left( \omega \times \vec{r}_i\right) $, derive the inertia matrix such that
$\vec{L} =I\omega, |\vec{L} \rangle = I |\vec{\omega} \rangle $

I used a X b X c = -c X a X b:

$ \vec{L}_i = -m_i \left( \vec{r}_i \times \vec{r}_i \times \omega \right) $

Using bac-cab, $ \vec{L}_i = -m_i \left( \vec{r}_i \left( \vec{r}_i \cdot \omega \right) -\vec{\omega}\left( \vec{r}_i \cdot\vec{r}_i \right) \right)$ and $\vec{r}_i \cdot \vec{\omega} = 0$ (orthogonal), so $ \vec{L}_I = m_i \left( \vec{\omega}\left( \vec{r}_i \cdot\vec{r}_i \right) \right)$ and $ I =m_i \vec{r}^2_i $ ...

That look right ?
Two comments. When you use I as the moment of inertia please exclusively (if you can) use i to indicate the ith particle. [math]L_I[/math] is somewhat unclear. Also, you have a typo: The last expression should be [math]\vec{L}_i = \vec{ \omega } ~ m_i ( \vec{r}_i \cdot \vec{r} _i )[/math].

-Dan
 
Hi - that I subscript is an annoying auto-correct in browsers (unless it is in this editor?) , which I haven't figured out how to turn off - normally I catch them all...

I am not sure my conclusion that $r_i$ and $\omega$ are orthog. is valid?

Please confirm, in that last expression, because $m_i$ is scalar it can be moved anywhere in the term?

This is a section on matrices & eigenvalues, so I'd like a matrix solution for I, something like $ \begin{bmatrix}L_1\\L_2\\L_3\end{bmatrix} = \begin{bmatrix}I_{11}&I_{12}&I_{13}\\I_{21}&...\\...&&I_{33}\end{bmatrix} \begin{bmatrix}\omega_1\\ \omega_2\\ \omega_3\end{bmatrix} $ but I'm struggling to figure out the I elements from the 2 term eqtn I got (assuming r & $\omega$ orthog. that is)
 
ognik said:
I am not sure my conclusion that $r_i$ and $\omega$ are orthog. is valid?
Yeah, autocorrect features are a pain in the pahtootie.

[math]\vec{r}[/math] and [math]\vec{\omega}[/math] are defined to be perpendicular. Note though, that both can be functions of position or time.

ognik said:
Please confirm, in that last expression, because $m_i$ is scalar it can be moved anywhere in the term?
Correct.

ognik said:
This is a section on matrices & eigenvalues, so I'd like a matrix solution for I, something like $ \begin{bmatrix}L_1\\L_2\\L_3\end{bmatrix} = \begin{bmatrix}I_{11}&I_{12}&I_{13}\\I_{21}&...\\...&&I_{33}\end{bmatrix} \begin{bmatrix}\omega_1\\ \omega_2\\ \omega_3\end{bmatrix} $ but I'm struggling to figure out the I elements from the 2 term eqtn I got (assuming r & $\omega$ orthog. that is)
You have one. Rewrite the expression as [math]L_i = \left ( m_i \vec{r}_i \cdot \vec{r}_i \right ) \omega _i[/math]. This is now of the form: [math]\vec{L} = I \vec{\omega}[/math] where [math]I_{ii} = m_i~ \vec{r}_i \cdot \vec{r}_i[/math], to be explicit. Since the matrix elements [math]I_{ij}[/math], where i and j aren't equal, don't appear in the expressions then I is diagonal.

-Dan
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top