Infinite square well expectation value problem

Fakestreet123
Messages
2
Reaction score
0

Homework Statement


A particle in an infinite box is in the first excited state (n=2). Obtain the expectation value 1/2<xp+px>


2. The attempt at a solution

Honestly, I don't even know where to begin.
I assumed V<0, V>L is V=∞ and 0<V<L is V=0

I tried setting up the expectation value formula

1/2∫x|ψ*Pψ|2+(x|ψ2)*P x|ψ|2

but what is ψ? is it √(2/L) Sin ((n2πx)/L) because its the solution to the infinite well? are the bounds from 0 to L?

Thanks for viewing my question!
 
Last edited:
Physics news on Phys.org
\psi is the wave function for the given problem, that you find by solving Schrodinger equation for a given potential
 
Fakestreet123 said:

Homework Statement


A particle in an infinite box is in the first excited state (n=2). Obtain the expectation value 1/2<xp+px>


2. The attempt at a solution

Honestly, I don't even know where to begin.
I assumed V<0, V>L is V=∞ and 0<V<L is V=0
You mean V=∞ when x<0 or x>L.

I tried setting up the expectation value formula

1/2∫x|ψ*Pψ|2+(x|ψ2)*P x|ψ|2
How did you get this?

but what is ψ? is it √(2/L) Sin ((n2πx)/L) because its the solution to the infinite well? are the bounds from 0 to L?
You do use a solution for the infinite square well, but the function you wrote isn't quite correct.
 
Thanks for responding guys! I very much appreciate it!

vela said:
You mean V=∞ when x<0 or
x
>L.

Ahh yes, sorry for the crappy notation


How did you get this?

Uhhh Now that I've done some more studying I can see that its wrong but I was, at the time, hoping that the expectation values would be ∫<xp>+<px> = ∫<xp+px> and the expectation values of xp, px will just add together like magic.

Which is wrong! So I've redone the problem in an attempt to simply find the operator first

<xp> = -ihx(dψ/dx) and
<px> = -ih (d(xψ)/dx)
1/2<xp+px> = (-ih)/2 (x(dψ/dx)+(d(xψ)/dx)

Now the expectation value should be <1/2(xp+px)>= ∫ψ*(1/2)<xp+px>ψ dx?

do I just plug in 1/2<xp+px> (assuming its correct) and plug in ψ (the solution to the infinite square well) and take the integral from 0 to L?

You do use a solution for the infinite square well, but the function you wrote isn't quite correct.

Sorry! I was very wrong haha
√(2/L) Sin ((nπx)/L)
 
One thing that might help you:

Using [x,p] = ihbar, or xp - px = ihbar, or px = -ihbar + xp, you can write

xp + px = xp + xp - ihbar = 2xp - ihbar, which has an easier to calculate expectation value. (you should check my work, I may have made a mistake)

In general an expectation value is:

<Q> = ∫ψ*Qψdx, where Q on the right is the operator for the observable you want to calculate. ψ is the wavefunction of the particle, which should be supplied by your textbook (it looks like you have the right one though).

Removed by moderator[/color]

Where I used the normalization condition ∫ψ*ψdx = 1.

I'll leave it to you do actually do the integral, and to check my work.
 
Last edited by a moderator:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top