Infinite square well, Probability of measurement of particle's energy

machofan
Messages
8
Reaction score
0

Homework Statement



gHOY1oq.png


Homework Equations





The Attempt at a Solution



I have managed to do the first 3 parts of the questions. The last two 4 markers are the ones I am having difficulties with. I have tried using the expansion postulate which states the wavefunction is equal to the sum of the expansion coefficent "a" and the eigenfunction. Then by squaring the expansion coefficient, this should provide the probability.

The wavefunction from part 3) was found to be 2Acos(kx), and I've tried integrating this by squaring it, but I notice that's not the right way to go about this problem.

Any help would be much appreciated.
 
Physics news on Phys.org
As you said, the wavefunction Φ may be expanded in terms of a linear combination of the ψ(n). The {ψ} form an orthonormal basis. What happens if you take <ψ(1)|Φ>?
 
tman12321 said:
As you said, the wavefunction Φ may be expanded in terms of a linear combination of the ψ(n). The {ψ} form an orthonormal basis. What happens if you take <ψ(1)|Φ>?

If you take ψ and Φ, then integrate from a to -a, would that provide the expansion coefficient a_{n}? In which case, by squaring this coefficient, this would provide the probability?
 
This is a basic fact in quantum mechanics. You should consult your textbook so that you understand this, because you are bound to see it over and over again.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top