karkas
- 131
- 1
Homework Statement
Hey all, I'm trying to calculate the length of the cardioid r(θ)=1+cosθ (polar coordinates) and I figured I'd try to do it in one integral from 0 to 2Pi.
Homework Equations
So the integral is \int_{0}^{2\pi} \sqrt{r^2 + (\frac{dr}{d\theta})^2}d\theta
The Attempt at a Solution
and it becomes \int_{0}^{2\pi} \sqrt{1+cos\theta} d\theta which becomes I've found
\int_{0}^{2\pi} \sqrt{1+cos\theta} d\theta = \int_{0}^{2\pi} \frac{sin\theta}{\sqrt{1-cos\theta}} d\theta = 2\sqrt{1-cos\theta} |_{0}^{2\pi}
but that gives me 0 , although I run it through mathematica and it gives me 4sqrt{2}. Why?
Last edited: