Integral of absolute value of a Fourier transform

Mik256
Messages
5
Reaction score
0

Homework Statement


Hi guys,

I am going to calculate the following integral:
$$\int_0^{f_c+f_m} |Y(f)|^2\, df$$ where:$$Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ] $$

with ##\omega_0= 2\pi (f_c + f_m), \ \ \alpha_m=constant, \ \ f_c,f_m: frequencies, \ \ \theta_m: initial \ phase ##.

2. Homework Equations
Then, the integral weare looking for will get the following form:

$$ \int_0^{f_c+f_m} |Y(f)|^2 df= \int_o^{f_c + f_m} (\pi \alpha_m)^2 \Big|\sum_{l=1}^L \sqrt{g_l}e^{-j \omega \tau_l} \Big|^2 cos^2[2 \pi (f_c + f_m) + \theta_m]df =\\
(\pi \alpha_m)^2\int_0^{f_c+f_m} \sum_{l=1}^L g_l e^{-2j \omega \tau_l} \Big[cos^2[2 \pi (f_c + f_m) + \theta_m]\Big]df =\\
(\pi \alpha_m)^2 \Big(\sum_{l=1}^L g_l e^{-j2(2\pi) \tau_l}\Big) \Big[cos^2[2 \pi (f_c + f_m) +\theta_m] \Big] \int_0^{f_c+f_m}e^f df $$[/B]

The Attempt at a Solution



Using a delta's Dirac property: ##\delta(\omega - \omega_0)f(\omega)= f(\omega - \omega_0)## (please correct me if it is wrong, because I have doubts about it), I got:$$Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j[(\omega - \omega_0 )\tau_l - \theta_m)]} + e^{-j[(\omega - \omega_0) \tau_l + \theta_m)]} \right ] =\\
=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l} e^{-j \omega \tau_l} \left [ e^{j(\omega_0\tau_l + \theta_m)} + e^{-j( \omega_0 \tau_l + \theta_m)]} \right ] =\\
=(\pi \alpha_m) \Big(\sum_{l=1}^{L} \sqrt{g_l} e^{-j \omega \tau_l} \Big) cos [2 \pi (f_c + f_m)\tau_l + \theta_m]$$

So, finally:

$$ |Y(f)|^2=(\pi \alpha_m)^2 \Big|\sum_{l=1}^L \sqrt{g_l}e^{-j \omega \tau_l} \Big|^2 cos^2[2 \pi (f_c + f_m) + \theta_m]$$.Being ## \int_0^{f_c+f_m}e^f df = e^{f_c+f_m} - 1\approx e^{f_c+f_m} ##, then:$$\int_0^{f_c+f_m} |Y(f)|^2 df= (\pi \alpha_m)^2 \Big(\sum_{l=1}^L g_l e^{-j4 \pi (f_c + f_m) \tau_l}\Big) \Big[cos^2[2 \pi (f_c + f_m) +\theta_m] \Big]$$

My supervisor told me I am supposed to find a solution proportional to: ##\Big|\sum_{l=1}^L \sqrt{g_l}e^{j 2 \pi (f_c + f_m)\tau_l} \Big|^2##.

Could you please help me to find the right solution and where the error is?

Thank you so much for your help, I would really appreciate that![/B]
 
Physics news on Phys.org
Mik256 said:
##\delta(\omega-\omega_0)f(\omega)=f(\omega)##
This is not correct, it should be ##\int_0^{\infty} d\omega \delta(\omega-\omega_0)f(\omega)=f(\omega_0)##
Are you sure that the upper limit should be ##f_c+f_m##?
Because in that case both the delta function will give zero.
 
eys_physics said:
This is not correct, it should be ##\int_0^{\infty} d\omega \delta(\omega-\omega_0)f(\omega)=f(\omega_0)##
Are you sure that the upper limit should be ##f_c+f_m##?
Because in that case both the delta function will give zero.

Yes I am sure about it. Could you briefly explain me why I will get zero?

And, if you had an idea to solve it, would you be so kind to sketch me a solution?

Thanks for your help!
 
The statement I gave concerning the delta function in my previous post. The way to treat the delta function is to use (see https://math.stackexchange.com/questions/342743/delta-dirac-function-integral) :
##\delta(x)=1/(2\pi)\sum_{n=-\infty}^{\infty} e^{inx}##
and thus

##\delta(\omega-\omega_0)=1/(2\pi)\sum_{n=-\infty}^{\infty} e^{in(\omega-\omega_0)},##
##\delta(\omega+\omega_0)=1/(2\pi)\sum_{n=-\infty}^{\infty} e^{in(\omega+\omega_0)}.##

I cannot give you the complete solution according to the rules of this forum. But, if you need more help please tell where at the derivation you are stuck.
 
Alright, this is my attempt of solution:

$$ Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ] $$

$$ \int_0^{f_c+f_m} |Y(f)|^2df= \Big(\frac{\pi}{2} \alpha_m\Big)^2 \int_0^{f_c+f_m} \Big| \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ] \Big|^2 df = $$

$$= \Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \int_0^{f_c+f_m} \left [ \Big( e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) \Big)^2 + \Big( e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \Big)^2 +\underbrace{2 \Big| e^{-j(\omega \tau_l - \theta_m)} e^{-j(\omega \tau_l + \theta_m)}\delta(\omega - \omega_0)\delta(\omega + \omega_0)}_{=0} \Big| \right ] df $$

The last term is equal to zero because I have the multiplication of 2 delta; then:

$$ \int_0^{f_c+f_m} |Y(f)|^2df = \Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \Big[ \int_0^{f_c+f_m} \Big( e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0)\Big)^2 df + \int_0^{f_c+f_m} \Big(e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \Big) ^2 df \Big] = $$

$$\Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \Big[ \Big|e^{-j(\omega_0 \tau_l - \theta_m)} \Big|^2 + \Big| e^{j(\omega_0 \tau_l - \theta_m)} \Big|^2 \Big] $$

Finally: $$ \int_0^{f_c+f_m} |Y(f)|^2df= \Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \Big( \Big|e^{-j(2 \pi (f_c+f_m) \tau_l - \theta_m)} \Big|^2 + \Big| e^{j(2 \pi (f_c+f_m) \tau_l - \theta_m)} \Big|^2 \Big) $$

Could it be the right solution or is there anything wrong?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top