Integral of absolute value of a Fourier transform

Click For Summary
SUMMARY

The integral of the absolute value of a Fourier transform, specifically $$\int_0^{f_c+f_m} |Y(f)|^2\, df$$, is calculated using the expression for $$Y(f)$$ defined as $$Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ]$$. The solution involves applying the properties of the Dirac delta function and results in an expression proportional to $$\Big|\sum_{l=1}^L \sqrt{g_l}e^{j 2 \pi (f_c + f_m)\tau_l} \Big|^2$$. Key errors in the initial approach include misinterpretation of the delta function's limits and its properties.

PREREQUISITES
  • Understanding of Fourier transforms and their properties
  • Knowledge of Dirac delta function and its applications
  • Familiarity with complex exponentials and trigonometric identities
  • Basic calculus, particularly integration techniques
NEXT STEPS
  • Study the properties of the Dirac delta function in detail
  • Learn about Fourier transform applications in signal processing
  • Explore complex analysis, particularly in relation to Fourier transforms
  • Investigate the implications of phase shifts in Fourier analysis
USEFUL FOR

Students and professionals in mathematics, physics, and engineering, particularly those working with signal processing and Fourier analysis.

Mik256
Messages
5
Reaction score
0

Homework Statement


Hi guys,

I am going to calculate the following integral:
$$\int_0^{f_c+f_m} |Y(f)|^2\, df$$ where:$$Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ] $$

with ##\omega_0= 2\pi (f_c + f_m), \ \ \alpha_m=constant, \ \ f_c,f_m: frequencies, \ \ \theta_m: initial \ phase ##.

2. Homework Equations
Then, the integral weare looking for will get the following form:

$$ \int_0^{f_c+f_m} |Y(f)|^2 df= \int_o^{f_c + f_m} (\pi \alpha_m)^2 \Big|\sum_{l=1}^L \sqrt{g_l}e^{-j \omega \tau_l} \Big|^2 cos^2[2 \pi (f_c + f_m) + \theta_m]df =\\
(\pi \alpha_m)^2\int_0^{f_c+f_m} \sum_{l=1}^L g_l e^{-2j \omega \tau_l} \Big[cos^2[2 \pi (f_c + f_m) + \theta_m]\Big]df =\\
(\pi \alpha_m)^2 \Big(\sum_{l=1}^L g_l e^{-j2(2\pi) \tau_l}\Big) \Big[cos^2[2 \pi (f_c + f_m) +\theta_m] \Big] \int_0^{f_c+f_m}e^f df $$[/B]

The Attempt at a Solution



Using a delta's Dirac property: ##\delta(\omega - \omega_0)f(\omega)= f(\omega - \omega_0)## (please correct me if it is wrong, because I have doubts about it), I got:$$Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j[(\omega - \omega_0 )\tau_l - \theta_m)]} + e^{-j[(\omega - \omega_0) \tau_l + \theta_m)]} \right ] =\\
=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l} e^{-j \omega \tau_l} \left [ e^{j(\omega_0\tau_l + \theta_m)} + e^{-j( \omega_0 \tau_l + \theta_m)]} \right ] =\\
=(\pi \alpha_m) \Big(\sum_{l=1}^{L} \sqrt{g_l} e^{-j \omega \tau_l} \Big) cos [2 \pi (f_c + f_m)\tau_l + \theta_m]$$

So, finally:

$$ |Y(f)|^2=(\pi \alpha_m)^2 \Big|\sum_{l=1}^L \sqrt{g_l}e^{-j \omega \tau_l} \Big|^2 cos^2[2 \pi (f_c + f_m) + \theta_m]$$.Being ## \int_0^{f_c+f_m}e^f df = e^{f_c+f_m} - 1\approx e^{f_c+f_m} ##, then:$$\int_0^{f_c+f_m} |Y(f)|^2 df= (\pi \alpha_m)^2 \Big(\sum_{l=1}^L g_l e^{-j4 \pi (f_c + f_m) \tau_l}\Big) \Big[cos^2[2 \pi (f_c + f_m) +\theta_m] \Big]$$

My supervisor told me I am supposed to find a solution proportional to: ##\Big|\sum_{l=1}^L \sqrt{g_l}e^{j 2 \pi (f_c + f_m)\tau_l} \Big|^2##.

Could you please help me to find the right solution and where the error is?

Thank you so much for your help, I would really appreciate that![/B]
 
Physics news on Phys.org
Mik256 said:
##\delta(\omega-\omega_0)f(\omega)=f(\omega)##
This is not correct, it should be ##\int_0^{\infty} d\omega \delta(\omega-\omega_0)f(\omega)=f(\omega_0)##
Are you sure that the upper limit should be ##f_c+f_m##?
Because in that case both the delta function will give zero.
 
eys_physics said:
This is not correct, it should be ##\int_0^{\infty} d\omega \delta(\omega-\omega_0)f(\omega)=f(\omega_0)##
Are you sure that the upper limit should be ##f_c+f_m##?
Because in that case both the delta function will give zero.

Yes I am sure about it. Could you briefly explain me why I will get zero?

And, if you had an idea to solve it, would you be so kind to sketch me a solution?

Thanks for your help!
 
The statement I gave concerning the delta function in my previous post. The way to treat the delta function is to use (see https://math.stackexchange.com/questions/342743/delta-dirac-function-integral) :
##\delta(x)=1/(2\pi)\sum_{n=-\infty}^{\infty} e^{inx}##
and thus

##\delta(\omega-\omega_0)=1/(2\pi)\sum_{n=-\infty}^{\infty} e^{in(\omega-\omega_0)},##
##\delta(\omega+\omega_0)=1/(2\pi)\sum_{n=-\infty}^{\infty} e^{in(\omega+\omega_0)}.##

I cannot give you the complete solution according to the rules of this forum. But, if you need more help please tell where at the derivation you are stuck.
 
Alright, this is my attempt of solution:

$$ Y(f)=\frac{\pi}{2} \alpha_m \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ] $$

$$ \int_0^{f_c+f_m} |Y(f)|^2df= \Big(\frac{\pi}{2} \alpha_m\Big)^2 \int_0^{f_c+f_m} \Big| \sum_{l=1}^{L} \sqrt{g_l}\left [ e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) + e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \right ] \Big|^2 df = $$

$$= \Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \int_0^{f_c+f_m} \left [ \Big( e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0) \Big)^2 + \Big( e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \Big)^2 +\underbrace{2 \Big| e^{-j(\omega \tau_l - \theta_m)} e^{-j(\omega \tau_l + \theta_m)}\delta(\omega - \omega_0)\delta(\omega + \omega_0)}_{=0} \Big| \right ] df $$

The last term is equal to zero because I have the multiplication of 2 delta; then:

$$ \int_0^{f_c+f_m} |Y(f)|^2df = \Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \Big[ \int_0^{f_c+f_m} \Big( e^{-j(\omega \tau_l - \theta_m)} \delta(\omega - \omega_0)\Big)^2 df + \int_0^{f_c+f_m} \Big(e^{-j(\omega \tau_l + \theta_m)} \delta(\omega + \omega_0) \Big) ^2 df \Big] = $$

$$\Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \Big[ \Big|e^{-j(\omega_0 \tau_l - \theta_m)} \Big|^2 + \Big| e^{j(\omega_0 \tau_l - \theta_m)} \Big|^2 \Big] $$

Finally: $$ \int_0^{f_c+f_m} |Y(f)|^2df= \Big(\frac{\pi}{2} \alpha_m\Big)^2 \sum_{l=1}^{L} {g_l} \Big( \Big|e^{-j(2 \pi (f_c+f_m) \tau_l - \theta_m)} \Big|^2 + \Big| e^{j(2 \pi (f_c+f_m) \tau_l - \theta_m)} \Big|^2 \Big) $$

Could it be the right solution or is there anything wrong?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K