Integral of x / ((a-x)^2+b^2)^2 ?

  • Thread starter Thread starter mmm0036
  • Start date Start date
  • Tags Tags
    Integral
mmm0036
Messages
1
Reaction score
0
Integral of x / ((a-x)^2+b^2)^2 ?

Homework Statement



Find the integral of

x / [(a-x)^2+b^2]^2


Homework Equations



None really... integration by parts or Trigonometry substitution maybe:


The Attempt at a Solution



I tried but I didn't get solution.
 
Physics news on Phys.org


Can you show us some of your work?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top