Dassinia
- 141
- 0
Hello,
In my electrodynamics course, there's a "maths" introduction and there's something i don't get !
It says that :
the integral on the surface of a sphere is
∫1/r da = 4πr'/3 with r=|r'-R|, R the vector from the element da to the center.
r'=r'*z^
For me, R=R*z^
So, |r'-R|= (r'²-R²+2r'*R)1/2
∫1/r da = ∫1/((r'²-R²+2r'*R)1/2)) da
And da= R²*cos dθ dphi z^
And then I'm stuck !
thanks
In my electrodynamics course, there's a "maths" introduction and there's something i don't get !
Homework Statement
It says that :
the integral on the surface of a sphere is
∫1/r da = 4πr'/3 with r=|r'-R|, R the vector from the element da to the center.
r'=r'*z^
The Attempt at a Solution
For me, R=R*z^
So, |r'-R|= (r'²-R²+2r'*R)1/2
∫1/r da = ∫1/((r'²-R²+2r'*R)1/2)) da
And da= R²*cos dθ dphi z^
And then I'm stuck !
thanks