How to Correctly Integrate x e^(-3x) Using Integration by Parts?

  • Thread starter Thread starter b0rsuk
  • Start date Start date
  • Tags Tags
    Dx Integral
b0rsuk
Messages
5
Reaction score
0

Homework Statement


\int x e^-3x dx


Homework Equations



\int f(x)g'(x) = f(x)g(x) - \int f'(x) g(x)

Integration by substitution not allowed

The Attempt at a Solution


f(x) = x, f'(x) = 1, g'(x) = e^{-3x}, g(x) = \int e^{-3x} dx = -\frac{1}{3}e^{-3x}
\int x e^{-3x} dx = x(-\frac{1}{3})e^{-3x} - \int - \frac{1}{3} e^{-3x} dx =
= -\frac{1}{3} x e^{-3x} + \frac{1}{3} \int e^{-3x} dx =-\frac{1}{3} x e^{-3x} -\frac{1}{9} e^{-3x} + C

Which is incorrect. I'm not sure how to integrate e^(-3x) properly.
 
Physics news on Phys.org
so you tried integration by parts. what is the derivative of e^(-3x). And then how would i integrate this.
 
b0rsuk said:

Homework Statement


\int x e^{-3x} dx
...


=-\frac{1}{3} x e^{-3x} -\frac{1}{9} e^{-3x} + C

Which is incorrect. I'm not sure how to integrate e^(-3x) properly.

Why do you think this is incorrect ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top