Integrals for the LogGamma & polygamma fcns

  • Thread starter Thread starter benorin
  • Start date Start date
  • Tags Tags
    Integrals
benorin
Science Advisor
Insights Author
Messages
1,442
Reaction score
191
I have proved that for \Re [z]>0,

\log \Gamma (z) = \int_{0}^{\infty} \left( z-1+\frac{1-e^{-(z-1)t}}{e^{-t}-1}\right) \frac{e^{-t}}{t}dt​

and I wish to justify differentiating under the integral sign (n+1)-times to give integral formulas for the polygamma functions. Let

f(t)=\left( z-1+\frac{1-e^{-(z-1)t}}{e^{-t}-1}\right) \frac{e^{-t}}{t}​

I have proved that if \Re [z]>0,\mbox{ and }|z|<\infty, then

\lim_{t\rightarrow 0^+} f(t)=\frac{1}{2}z^2-\frac{3}{2}z+1,\mbox{ and }\lim_{t\rightarrow\infty} f(t)=0​

and if I recall correctly, it is sufficient that the integral in question be absolutely convergent to apply the differentiation rule.

EDIT: So how do I absolute convergence? Any hints?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top