Integrate x^3/2 divided by expression - using partial fractions perhaps

Mustaq
Messages
2
Reaction score
0

Homework Statement


Hi. My first post!
I'm trying to solve for where a is a constant:

∫ (x/a)1/2*(x/(x-a)) dx


Homework Equations


See above


The Attempt at a Solution


I've tried integration by parts by setting u=(x/a)1/2 but I end up having to solve ∫ (x/a)1/2ln(x-a) - which I can't solve.
I've tried switching them around u=x/(x-a) and end up having to solve ∫x3/2/(x-a)2 - which I can't solve either.
I've thought of using partial fractions but run into x3/2/(x-a)2 which I can't do either.

Any help gratefully received.
Thanks
 
Physics news on Phys.org
The change of variable u=(x/a)1/2 is very much solvable. Try it again.
 
So obvious. I was looking for something really complicated.
Let u = (x/a)1/2
So x=au2, dx/du=2au

First simplify:
∫(x/a)1/2(x/(x-a)) dx
∫(x/a)1/2( 1 + a/(x-a) ) dx

Substitute by u:
∫u( 1 + a/(au2-a) ) 2au du
2a∫u2( 1 + 1/(u2-1) ) du
2/3au3 + 2a∫u2/(u2-1) du
2/3au3 + 2a∫(1 + 1/(u2-1)) du
2/3au3 + 2au + aln( (u-1)/(u+1) )

Finally put back x and get required anaswer:
2/3(x3/a)1/2 + 2(ax)1/2 + aln( ((x/a)1/2-1)/((x/a)1/2+1) )

Thanks, for the hint which lead to the solution (was on it for weeks LOL)
 
Last edited:
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top