awvvu
- 188
- 1
This integral came up while trying to find the potential of a uniformly charged rectangle.
\int \log(\sqrt{a^2+x^2} + b) dx
Integrator gives a pretty long expression involving inverse tangents so I'm not sure where to begin at all. I tried integrating by parts once, taking u to be the whole expression, but it just makes it messier. I also tried the trig subtitution:
x = a \tan(\theta)
\int a \log(a \sec(\theta) + b) \sec^2(\theta) d \theta
But that's not any easier to integrate.
\int \log(\sqrt{a^2+x^2} + b) dx
Integrator gives a pretty long expression involving inverse tangents so I'm not sure where to begin at all. I tried integrating by parts once, taking u to be the whole expression, but it just makes it messier. I also tried the trig subtitution:
x = a \tan(\theta)
\int a \log(a \sec(\theta) + b) \sec^2(\theta) d \theta
But that's not any easier to integrate.
Last edited: