osc
- 6
- 0
Homework Statement
Calculate
\int _{\mathbb{R}^{3+}} V(\textbf{r} ) d\textbf{r}
where
V(\textbf{r})=\frac{1}{r},\ \ r=||\textbf{r}||
The Attempt at a Solution
I'm guessing
\textbf{r}=x \textbf{i} + y \textbf{j} + z \textbf{k}
so
r=\sqrt{x^2+y^2+z^2}
and
d\textbf{r}= \textbf{i} dx + \textbf{j} dy + \textbf{k} dz
But this can't mean that
\int _{\mathbb{R}^{3+}} V(\textbf{r} ) d\textbf{r}=<br /> \int _{\mathbb{R}^{3+}} \frac{1}{\sqrt{x^2+y^2+z^2}} (\textbf{i} dx + \textbf{j} dy + \textbf{k} dz)=<br /> \int _{\mathbb{R}^{+}} \frac{1}{\sqrt{x^2+y^2+z^2}} \textbf{i} dx<br /> +\int _{\mathbb{R}^{+}} \frac{1}{\sqrt{x^2+y^2+z^2}} \textbf{j} dy<br /> +\int _{\mathbb{R}^{+}} \frac{1}{\sqrt{x^2+y^2+z^2}} \textbf{k} dz<br />
can it?
What would i,j,k mean in an integral?
I could have understood something like
\int _{\mathbb{R}^{3+}} V(\textbf{r} ) \cdot d\textbf{r}
but now I'm lost.