Integrating velocity equation to find position?

AI Thread Summary
To find the position of the object as a function of time, the velocity equation v = vi/(1 + kvit must be integrated. The differential equation dx/dt = vi/(1 + kvit suggests that it can be treated as a separable equation, although it initially appears challenging due to the absence of x terms. By recognizing that k and vi are constants, the integration can be simplified to a basic form. Ultimately, the integration yields the position function in terms of time, confirming the approach to solving the problem.
Cryptologica
Messages
22
Reaction score
0

Homework Statement



For t < 0, an object of mass m experiences no force and moves in the positive x direction with a constant speed vi. Beginning at t = 0, when the object passes position x = 0, it experiences a net resistive force proportional to the square of its speed: Fnet = −mkv2, where k is a constant. The speed of the object after t = 0 is given by
v = vi/(1 + kvit).

(a) Find the position x of the object as a function of time. (Use the following as necessary: k, m, t, and vi.)

(b) Find the object's velocity as a function of position. (Use the following as necessary: k, m, t, vi, and x.)

Homework Equations



a = Δv/Δt
v = Δx/Δt

The Attempt at a Solution



I am suspecting that I need to integrate the given function to find the position function? I know that v = Δx/Δt, so we should have:

dx/dt = vi/(1 + kvit)
then we need to take the definite integral from x0 to xf or just 0 to xf. My calculus is a bit rough, but isn't this some sort of a separable differential equation? So we need to make all the x's and t's all on one side? Right now that seems, well, impossible since we have no x's? So do I need to find something involving v and x, then relate/substitute so I only have x's and t's? Help please...
 
Physics news on Phys.org
Yes, integrate dx/dt = vi/(1 + kvit)

k and vi are constants, so this is of the basic form 1/(1 + a.t)
and you just integrate with respect to t.
 
Ok, thanks!
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top