cse63146
- 435
- 0
Homework Statement
Integrate: -\frac{2}{\theta} \int^{\infty}_0 y e^{-2y/\theta} dy + \frac{2}{\theta} \int^{\infty}_0 y e^{-y/\theta}dy
Homework Equations
The Attempt at a Solution
Let u = y/theta; y=u*theta; dy = du*theta, which becomes
-2 \int^{\infty}_0 u \theta e^{-2u} du + 2\int^{\infty}_0 u \theta e^{-u}du
Doing each integral seperately and then adding them up:
-2 \int^{\infty}_0 u \theta e^{-2u} du = u\theta e^{-2u} |^{\infty}_0 - 2 \theta \int^{\infty}_0 e^{-2u} du = \theta e^{-2u} |^{\infty}_0 = - \theta
2\int^{\infty}_0 u \theta e^{-u}du = -2u \theta e^{-u}|^{\infty}_0 + 2 \theta \int^{\infty}_0 e^{-u} du =-2 \theta e^{-u} |^{\infty}_0 = 2 \theta
When I add them up, I get theta, but the answer is supposed to be (3/2)theta. Where did I make the mistake?