This is the example I am following about the a1 being indeterminate...
Here is the first leg of the calculations : \displaystyle a_{n} = \frac{V}{\pi}\int_{\frac{\pi}{2}}^{\pi}\sin(\omega t)\cos(n\omega t) \delta\omega t + \frac{V}{\pi}\int_{\frac{3\pi}{2}}^{2\pi}\sin(\omega t)\cos(n\omega t)\delta\omega t
So in the first step I have evaluated that between 0 and pi/2 the function equals zero and is omitted, same as with pi to 3pi/2. V has been brought outside the integral.
\displaystyle \frac{V}{2\pi}\int_{\frac{\pi}{2}}^{\pi}\sin(\omega t+n\omega t)+\sin(\omega t -n\omega t)\delta\omega t + \frac{V}{2\pi}\int_{\frac{3\pi}{2}}^{2\pi}\sin(\omega t+n\omega t)+\sin(\omega t -n\omega t)\delta\omega t
In step two I have used the "product to sum" identity
\displaystyle \sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)]
\displaystyle u=\omega t \pm n\omega t \\ \delta u = n \pm 1 \\ \delta\omega t = \frac{\delta u}{n\pm 1}\\ \\ \frac{V}{2\pi}\Big[-\frac{\cos(\omega t + n \omega t)}{n+1} - \frac{\cos(\omega t - n \omega t)}{n-1} \Big]_{\frac{\pi}{2}}^{\pi} + \frac{V}{2\pi}\Big[-\frac{\cos(\omega t + n \omega t)}{n+1} - \frac{\cos(\omega t - n \omega t)}{n-1}\Big]_{\frac{3\pi}{2}}^{2\pi} \\
Step 3 I have integrated by parts
\displaystyle \frac{V}{2\pi}\Bigg[\Big[-\frac{\cos(\pi + n \pi)}{n+1} - \frac{\cos(\pi - n \pi)}{n-1} \Big] - \Big[-\frac{\cos(\frac{\pi}{2} + n \frac{\pi}{2})}{n+1} - \frac{\cos(\frac{\pi}{2} - n \frac{\pi}{2})}{n-1} \Big]\Bigg] + \frac{V}{2\pi}\Bigg[\Big[-\frac{\cos(2\pi + n 2\pi)}{n+1} - \frac{\cos(2\pi - n 2\pi)}{n-1} \Big] - \Big[-\frac{\cos(\frac{3\pi}{2} + n \frac{3\pi}{2})}{n+1} - \frac{\cos(\frac{3\pi}{2} - n \frac{3\pi}{2})}{n-1} \Big]\Bigg]
step 4 expanding out the limits
\displaystyle \frac{V}{2\pi}\Bigg[\Big[-\frac{\cos(\pi)\cos(n\pi)- \sin(\pi)\sin(n\pi)}{n+1} - \frac{\cos(\pi)\cos(n\pi)+ \sin(\pi)\sin(n\pi)}{n-1} \Big] - \Big[-\frac{\cos(\frac{\pi}{2})\cos(n\frac{\pi}{2})- \sin(\frac{\pi}{2})\sin(n\frac{\pi}{2})}{n+1} - \frac{\cos(\frac{\pi}{2})\cos(n\frac{\pi}{2})+ \sin(\frac{\pi}{2})\sin(n\frac{\pi}{2})}{n-1} \Big]\Bigg] + \frac{V}{2\pi}\Bigg[\Big[-\frac{\cos(2\pi)\cos(n2\pi)- \sin(2\pi)\sin(n2\pi)}{n+1} - \frac{\cos(2\pi)\cos(n2\pi)+ \sin(2\pi)\sin(n2\pi)}{n-1} \Big] - \Big[-\frac{\cos(\frac{3\pi}{2})\cos(n\frac{3\pi}{2})- \sin(\frac{3\pi}{2})\sin(n\frac{3\pi}{2})}{n+1} - \frac{\cos(\frac{3\pi}{2})\cos(n\frac{3\pi}{2})+ \sin(\frac{3\pi}{2})\sin(n\frac{3\pi}{2})}{n-1} \Big]\Bigg]
step 5 i have used the sum and difference formula:
\displaystyle\cos(\alpha\pm\beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta
\displaystyle \frac{V}{2\pi}\Bigg[\Big[-\frac{\cos(\pi)\cos(n\pi)}{n+1} - \frac{\cos(\pi)\cos(n\pi)}{n-1} \Big] - \Big[-\frac{- \sin(\frac{\pi}{2})\sin(n\frac{\pi}{2})}{n+1} - \frac{ \sin(\frac{\pi}{2})\sin(n\frac{\pi}{2})}{n-1} \Big]\Bigg] + \frac{V}{2\pi}\Bigg[\Big[-\frac{\cos(2\pi)\cos(n2\pi)}{n+1} - \frac{\cos(2\pi)\cos(n2\pi)}{n-1} \Big] - \Big[-\frac{- \sin(\frac{3\pi}{2})\sin(n\frac{3\pi}{2})}{n+1} - \frac{ \sin(\frac{3\pi}{2})\sin(n\frac{3\pi}{2})}{n-1} \Big]\Bigg]
step 6 I have canceled out the zero cosine and sine terms
\displaystyle \frac{V}{2\pi}\Bigg[\Big[\frac{\cos(n\pi)}{n+1} + \frac{\cos(n\pi)}{n-1} \Big] - \Big[\frac{\sin(n\frac{\pi}{2})}{n+1} + \frac{ \sin(n\frac{\pi}{2})}{n-1} \Big]\Bigg] + \frac{V}{2\pi}\Bigg[\Big[-\frac{\cos(n2\pi)}{n+1} - \frac{\cos(n2\pi)}{n-1} \Big] - \Big[-\frac{ \sin(n\frac{3\pi}{2})}{n+1} + \frac{ \sin(n\frac{3\pi}{2})}{n-1} \Big]\Bigg]
Step 7 canceled out the 1 and -1 terms
\displaystyle \frac{V}{2\pi}\Bigg[\frac{2n\cos(n\pi)-2n\sin(n\frac{\pi}{2})-2n\cos(n2\pi)+2\sin(n\frac{3\pi}{2}))}{n^2-1}\Bigg]
step 8 consolidated
Here is where I am stuck to carry on...
inputting my last expression into a wolfram table reveals ...
LINK
In comparison to
LINK which is an answer given in a previous topic on PF ...
LINK
Somewhere I have made a mistake!
Thanks again
EL