Integration using eulers formula and complex numbers

cragar
Messages
2,546
Reaction score
3
does anyone know how to integrate e^(-2x)(cos(3x)dx
using eulers formula e^(ix)= i(sinx)+cosx
 
Physics news on Phys.org
cragar said:
does anyone know how to integrate e^(-2x)(cos(3x)dx
using eulers formula e^(ix)= i(sinx)+cosx

Use eular's identity to express the above equation as an exponential function.
 
From e^{ix}= cos x+i sinx, changing x to -x and remembering that cosine is an "even" function and sine is an "odd" function, e^{-ix}= cos x- i sin s so adding, e^{ix}+ e^{-ix}= 2 cos x so cos x= (e^{ix}+ e^{-ix})/2.

cos(3x)= \frac{e^{3ix}+ e^{-3ix}}{2}

e^{2x}cos(3x)= \frac{e^{(2+3i)x}+ e^{(2-3i)}}{2}
 
ok i get it now thanks
 
k i think i get it now but how would we integrate e^(2x)*(sin(-2x))dx
 
e^{2x}sin(-2x)= -e^{2x}sin(2x)<br /> sin(2x)= \frac{e^{2x}- e^{-2x}}{2i}
 

Similar threads

Replies
6
Views
1K
Replies
1
Views
3K
Replies
4
Views
1K
Replies
1
Views
2K
Replies
10
Views
7K
Replies
2
Views
1K
Back
Top