Fragezeichen
- 5
- 0
Homework Statement
Show that the Lagrangian
\mathcal{L}=\frac{m}{2}\vec{\dot{r}}^2 \, \frac{1}{(1+g \vec{r}^2)^2}
is invariant under the Transformation
\vec{r} \rightarrow \tilde{r}=\vec{r}+\vec{a}(1-g\vec{r}^2)+2g\vec{r}(\vec{r} \cdot \vec{a})
where b is a constant and \vec{a} are infinitesimal parameters.
2. The attempt at a solution
(1+g\vec{\tilde{r}}^2)^2=(1+g\vec{r}^2)^2 (1+4g(\vec{r} \cdot \vec{a}))
\frac{d \vec{\tilde{r}}}{dt}=\vec{\dot{r}}-2g\vec{a}(\vec{r}\cdot \vec{\dot{r}})+2g(\underbrace{\vec{\dot{r}} (\vec{a}\cdot \vec{r})+\vec{r}(\vec{a}\cdot\vec{\dot{r}}}_{?}))
Can you tell me, wheter this is OK so far?