AbigailM
- 46
- 0
I'm currently preparing for a classical prelim and am concerned that this problem may not be correct. I'm second guessing myself due to the hint given in the problem, which I did not use. Any help is more than appreciated. A picture of the pendulum is included.
A thin pencil with length 20 cm is balanced on a desktop, standing on its point so that its angle of inclination \theta with respect to the vertical is nearly zero. A small perturbation is sufficient to tip it over. Suppose that initially, \theta (0) = 1 x 10^{-17} radians and \dot{\theta(0)} = 0. Assuming that the pencil point remains fixed, in how many second will it tip over on its side through and angle of 90^{°}?
Hint: The following integral, accurate for \theta_{0} < 0.01 may be useful.
\int_{\theta_{0}}^{\pi /2} \frac{d \theta}{\sqrt{cos \theta_{0}-cos \theta}} \cong -\sqrt{2} ln \theta_{0} + 1.695
g = 9.8m/s^{2}
l = 20cm = .20m
I = I_{cm} + mh^{2} ; h = l/2
= \frac{1}{12} ml^{2} + \frac{1}{4} ml^{2}
= \frac{4}{12} ml^{2}
T = \frac{1}{2}I \dot{\theta^{2}} = \frac{1}{2}(\frac{4}{12}ml^{2})\dot{\theta^{2}} = \frac{1}{6}ml^{2}\dot{\theta^{2}}
U = mg \frac{l}{2} cos \theta
L = T - U = \frac{1}{6}ml^{2}\dot{\theta^{2}} - mg\frac{l}{2}cos\theta
\frac{\partial L}{\partial \theta} = mg\frac{l}{2}sin\theta
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = \frac{1}{3}ml^{2}\ddot{\theta}
\ddot{\theta} = \frac{3g}{2l} sin \theta = \omega^{2} sin \theta \hspace{1 in} \omega = \sqrt{\frac{3g}{2l}} = 8.58 \frac{rad}{s}
We can use small angle approximation so \ddot{\theta} \approx \omega^{2} \theta
\theta (t) = Ae^{\omega t} + Be^{-\omega t} \hspace{1 in} \dot{\theta (t)} = \omega Ae^{\omega t} - \omega Be^{-\omega t}
\dot{\theta} (0) = \omega A - \omega B = 0 \hspace{1 in} ; A = B
\theta (t) = A \left(e^{\omega t} + e^{- \omega t}\right) = 2Acosh(\omega t)
\theta (0) = 2A = 1 x 10^{-17} rad
\theta (t) = (1 x 10^{-17})cosh(\omega t)
\theta (t) = \frac{\pi}{2} - 1 x 10^{-17} rad \approx \frac{\pi}{2}
\theta (t) = \frac{\pi}{2} = (1 x 10^{-17})cosh(\omega t)
\frac{\pi}{2 x 10^{-17}} = cosh(\omega t)
t = \left(\frac{1}{\omega} \right) cosh^{-1} \left(\frac{\pi}{2 x 10^{-17}}\right) = \frac{1}{8.58} cosh^{-1}\left(\frac{\pi}{2 x 10^{-17}}\right)
t \approx 4.7s
Homework Statement
A thin pencil with length 20 cm is balanced on a desktop, standing on its point so that its angle of inclination \theta with respect to the vertical is nearly zero. A small perturbation is sufficient to tip it over. Suppose that initially, \theta (0) = 1 x 10^{-17} radians and \dot{\theta(0)} = 0. Assuming that the pencil point remains fixed, in how many second will it tip over on its side through and angle of 90^{°}?
Hint: The following integral, accurate for \theta_{0} < 0.01 may be useful.
\int_{\theta_{0}}^{\pi /2} \frac{d \theta}{\sqrt{cos \theta_{0}-cos \theta}} \cong -\sqrt{2} ln \theta_{0} + 1.695
Homework Equations
g = 9.8m/s^{2}
l = 20cm = .20m
I = I_{cm} + mh^{2} ; h = l/2
= \frac{1}{12} ml^{2} + \frac{1}{4} ml^{2}
= \frac{4}{12} ml^{2}
The Attempt at a Solution
T = \frac{1}{2}I \dot{\theta^{2}} = \frac{1}{2}(\frac{4}{12}ml^{2})\dot{\theta^{2}} = \frac{1}{6}ml^{2}\dot{\theta^{2}}
U = mg \frac{l}{2} cos \theta
L = T - U = \frac{1}{6}ml^{2}\dot{\theta^{2}} - mg\frac{l}{2}cos\theta
\frac{\partial L}{\partial \theta} = mg\frac{l}{2}sin\theta
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = \frac{1}{3}ml^{2}\ddot{\theta}
\ddot{\theta} = \frac{3g}{2l} sin \theta = \omega^{2} sin \theta \hspace{1 in} \omega = \sqrt{\frac{3g}{2l}} = 8.58 \frac{rad}{s}
We can use small angle approximation so \ddot{\theta} \approx \omega^{2} \theta
\theta (t) = Ae^{\omega t} + Be^{-\omega t} \hspace{1 in} \dot{\theta (t)} = \omega Ae^{\omega t} - \omega Be^{-\omega t}
\dot{\theta} (0) = \omega A - \omega B = 0 \hspace{1 in} ; A = B
\theta (t) = A \left(e^{\omega t} + e^{- \omega t}\right) = 2Acosh(\omega t)
\theta (0) = 2A = 1 x 10^{-17} rad
\theta (t) = (1 x 10^{-17})cosh(\omega t)
\theta (t) = \frac{\pi}{2} - 1 x 10^{-17} rad \approx \frac{\pi}{2}
\theta (t) = \frac{\pi}{2} = (1 x 10^{-17})cosh(\omega t)
\frac{\pi}{2 x 10^{-17}} = cosh(\omega t)
t = \left(\frac{1}{\omega} \right) cosh^{-1} \left(\frac{\pi}{2 x 10^{-17}}\right) = \frac{1}{8.58} cosh^{-1}\left(\frac{\pi}{2 x 10^{-17}}\right)
t \approx 4.7s