Irreversible expansion

  • #1
528
33
I was able to derive the work done in a reversible isothermal expansion. There as the P changes to P-dP, the volume increases by dV and hence the internal pressure also decreases by dP and equilibrium is maintained. (Thanks to @Nugatory and @Chestermiller fo r explaining it).
Now when we take an irreversible isothermal expansion in the book the ##P_{ext}## is taken constant and then dV is integrated to get
$$W = -P_{ext}(V_2-V_1) $$
But for reversible isothermal expansion, the ##P_ext## is taken as a variable. That is it is taken as ##\frac{nRT}{V}## and then integrated to get
$$W = RTln(\frac{V_2}{V_1})$$
why is ##P_{ext}## different for the two cases?
 

Answers and Replies

  • #2
1,007
76
A reversible process is one that can be halted at any stage and reversed. In a reversible process the system is at equilibrium at every stage of the process. An irreversible process is one where these conditions are not fulfilled.
If ## p_{int}>p_{ext} ## in an expansion process then the process is irreversible because the system does not remain at equilibrium at every stage of the process.

On the other hand if ## p_{int}=p_{ext} ## then the process is reversible.
In that case ## p_{int}=p_{ext}=p ##
You have written the other way round.
That that in reversible process the p is variable whereas in irreversible constant.
Can you check on that?
 
  • Like
Likes AdityaDev
  • #3
20,977
4,605
The equation you wrote for an irreversible expansion assumes a constant force per unit area Pext applied to the gas, and also, there should be a plus sign rather than a minus sign.

In an irreversible expansion, viscous stresses can contribute to Pext and, in addition, the pressure and/or the temperature within the gas are not uniform spatially, so we can't use the ideal gas law to determine the force per unit area exerted by the gas on the boundary (Pext). So the ideal gas law cannot be used to calculate the work done on the surroundings.

For both reversible and irreversible processes, the work done on the surroundings is equal to the integral of Pext dV. For an irreversible process, Pext is not equal to the pressure calculated from the ideal gas law P, but for a reversible process, the deformation is slow (such that viscous stresses are negligible), and also Pext = P = nRT/V. For an irreversible process, we can control Pext as a function of time t during the deformation to be whatever we wish.

Chet
 
  • Like
Likes Raghav Gupta and AdityaDev
  • #4
528
33
A reversible process is one that can be halted at any stage and reversed. In a reversible process the system is at equilibrium at every stage of the process. An irreversible process is one where these conditions are not fulfilled.
If ## p_{int}>p_{ext} ## in an expansion process then the process is irreversible because the system does not remain at equilibrium at every stage of the process.

On the other hand if ## p_{int}=p_{ext} ## then the process is reversible.
In that case ## p_{int}=p_{ext}=p ##
You have written the other way round.
That that in reversible process the p is variable whereas in irreversible constant.
Can you check on that?
The expressions are correct
 
  • #5
528
33
@Raghav Gupta ,take a look at @Chestermiller 's reply. The first paragraph solved my doubt. Second paragraph explains the reason why you cant take P=nRT/V for irreversible process.
 
  • Like
Likes Raghav Gupta
  • #6
1,007
76
@Raghav Gupta ,take a look at @Chestermiller 's reply. The first paragraph solved my doubt. Second paragraph explains the reason why you cant take P=nRT/V for irreversible process.
I was also a bit confused.Maybe I have read a wrong article or not clearly understood.Really these mentor guys explain in a nice detailed way.
 
  • Like
Likes Chestermiller

Related Threads on Irreversible expansion

Replies
21
Views
2K
Replies
7
Views
2K
Replies
1
Views
620
Replies
11
Views
4K
Replies
10
Views
9K
  • Last Post
Replies
1
Views
3K
Replies
8
Views
755
Replies
5
Views
2K
  • Last Post
2
Replies
25
Views
8K
Top