Is a=g/3 the only solution or are there other possible solutions?

  • Thread starter Thread starter UchihaClan13
  • Start date Start date
  • Tags Tags
    laws of motion
AI Thread Summary
The discussion revolves around solving the differential equation xg = x(dv/dt) + v^2, leading to the solution v = at, where it is determined that a = g/3. The participant questions whether it is valid to assume 'a' as a function of 'g', given both are constants. Clarification is provided that while the ratio can be constant, it does not imply a functional dependency in the traditional sense. The conclusion is reached that both 'a' and 'g' can be treated as constants under the problem's conditions, affirming that k remains constant even if g varies. The final consensus confirms the correctness of the approach and assumptions made in the solution.
UchihaClan13
Messages
145
Reaction score
12

Homework Statement


xg=x*(dv/dt)+v^2 is a differential equation
Which has a solution of the form v=at
Where a is a constant.Find a

Homework Equations



dv/dt=v*(dv/dx)
V=dx/dt
A=dv/dt=d^2x/dt^2

The Attempt at a Solution


I assumed 'a' as a function of g
That is a=kg for some constant k
And proceeded
I did get the correct answer a=g/3
My question is since both a and g are accelerations and constants
Is it correct to assume one as a function of the other?
For 2 arbitrary constants a and b, we have (a=kb) for another constant 'k' where a and b are never equal to zero at the same time
I hope my approach is correct
Any confirmations and insights are much appreciated!
UchihaClan13[/B]
 
Physics news on Phys.org
I can post the rest of the solution if required
All I need is some confirmation

UchihaClan13
 
Since they are constants, you have not really assumed one is a fixed function of the other. Rather, you have assumed that the ratio between them is also a constant, which is trivially true.
 
Yeah sorry
That's what I did
But y=kx (say)
Doesn't this lead to y=f (x)
For different values of x, won't we have different values of y
The only difference with this case and my original one is that
In my original one, both were constants
While in this one, both are variables
X being the independent variable and y being the dependent one

Is my reasoning correct then??UchihaClan13
 
UchihaClan13 said:
Yeah sorry
That's what I did
But y=kx (say)
Doesn't this lead to y=f (x)
For different values of x, won't we have different values of y
The only difference with this case and my original one is that
In my original one, both were constants
While in this one, both are variables
X being the independent variable and y being the dependent one

Is my reasoning correct then??UchihaClan13
Say we consider g to be a variable; we might run the same experiment in a different gravitational field. You say you assumed a=kg for some constant k, but you never used the assumption that it was constant. So instead, you could say let a, as function of g, be g times some other function of g, namely k(g). That would be quite valid and general.
But to solve the problem, you must assume dg/dt=0. You are given da/dt=0, so dk/dt=0. This allows you to substitute k(g)g for a and obtain k=1/3, a constant. So it turns out that k is constant even if g varies.
 
I see what you mean
Since the first derivative of g is zero,it implies g is a constant
And we already have da/dt=0 from the problem statement
So this would force dk/dt=0 meaning k would be a constant
Thanks a lot for your help

UchihaClan13
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top