awvvu
- 188
- 1
Homework Statement
http://img410.imageshack.us/img410/6864/1975m2lm2.png
The Attempt at a Solution
Could someone see if my solution is correct?
Part a:
I = M R^2 for a circular hoop.
L = \vec{r} \times \vec{p} = I \omega
m_0 v_0 R \sin(\theta) = M R^2 \omega
\omega = \frac{m_0 v_0 \sin(\theta)}{M R}
Part b:
Using conservation of momentum to find the velocity v of the dart+wheel system:
m_0 v_0 = (m_0 + M) v
v = \frac{m_0 v_0}{m_0 + M}
K_i = \frac{1}{2} m_0 v_0^2
K_f = K_{translational} + K_{rotation} = \frac{1}{2}(M + m_0) v^2 + \frac{1}{2} (M + m_0) R^2 \omega^2
And then just plug v and \omega in from above and calculate the ratio of final to initial? So, after a bunch of algebra:
\frac{K_f}{K_i} = m_0 \left(\frac{\sin^2(\theta)}{M}+\frac{\sin^2(\theta) m_0}{M^2}+\frac{1}{M+m_0}\right)
Last edited by a moderator: