facenian
- 433
- 25
Homework Statement
Let \psi(x,y,z)=\psi(\vec{r}) be the normalized wave function of a particle.Express in terms of \psi(\vec{r}) the probability for a simultaneous measurements o X y P_z to yield :
x_1 \leq x \leq x_2
p_z \geq 0
Homework Equations
<\vec{p}|\vec{r}>=\frac{1}{(2\pi\hbar)^{3/2}}e^{-i\vec{p}.\vec{r}/\hbar}
<\vec{p}|\psi>=\frac{1}{(2\pi\hbar)^{3/2}}\int \psi(\vec{r}) e^{-i\vec{p}.\vec{r}/\hbar} dr^3
The Attempt at a Solution
I have reached the following result:
\int_{-\infty}^{\infty}dz\int_{-\infty}^{\infty}dy\int_{x_1}^{x_2}dx \int_{-\infty}^{\infty}dp_x\int_{-\infty}^{\infty}dp_y\int_0^{\infty}dp_z <\vec{p}|\vec{r}>\psi(\vec{r})<\psi|\vec{p}>
I need to know two things: 1) is my result correct? 2) in case it is correct, is there any other more simple or concrete answer?
Last edited: