Is \(|p,\lambda\rangle\) an Eigenstate of the Helicity Operator?

CharlieCW
Messages
53
Reaction score
5

Homework Statement



For massless particles, we can take as reference the vector ##p^{\mu}_R=(1,0,0,1)## and note that any vector ##p## can be written as ##p^{\mu}=L(p)^{\mu}_{\nu}p^{\nu}_R##, where ##L(p)## is the Lorentz transform of the form

$$L(p)=exp(i\phi J^{(21)})exp(i\theta J^{(13)})exp(i\alpha J^{(30)})$$

Where ##(\theta,\phi)## are the spherical coordinates of ##\vec{p}## and ##\alpha=sinh^{-1}(\frac{1}{2}(p^0-1/p^0))##. This allows to define the general state for the massless particle as:

$$|p,\lambda\rangle=U(L(p))|p_R,\lambda\rangle$$

Where ##|p_R,\lambda\rangle## is an eigenstate with value ##\lambda## of the operator ##J_3##. Show that ##|p,\lambda\rangle## is an eigenstate of the helicity operator ##\frac{\vec{p}}{|\vec{p}|}\cdot\vec{J}##.

Homework Equations



$$J_3|p_R,\lambda\rangle=\lambda|p_R,\lambda\rangle$$

$$\vec{p}=|\vec{p}|(sin\theta cos\phi, sin\theta sin\phi, cos\theta )$$

$$U(\Lambda_a)U(\Lambda_b)=U(\Lambda_a \Lambda_b)$$

The Attempt at a Solution



For the last week, I've been trying to verify this last statement by expanding the exponentials or using commutators. For example, by using the commutation relationship

$$[J_i,J_k]=i\epsilon_{ijk}J_k$$

But I only end with non-reducible expressions. I also tried expanding the exponentials of the operators using the relationship

$$e^{A}=1+A+\frac{1}{2}A^2+\frac{1}{6}A^3+...$$

Without arriving at a result. Particulary, I don't understand how to act using the unitary transformations, as when I even try to start by calculating:

$$|p,\lambda\rangle=U(L(p))|p_R,\lambda\rangle)=U(exp(i\phi J^{(21)})exp(i\theta J^{(13)})exp(i\alpha J^{(30)}))|p_R,\lambda\rangle$$

Or even the direct calculation:

$$(\frac{\vec{p}}{|\vec{p}|}\cdot\vec{J})|p_R,\lambda\rangle=(\frac{\vec{p}}{|\vec{p}|}\cdot\vec{J})U(L(p))|p_R,\lambda\rangle)$$

I don't know how to reduce terms. Do you have any suggestions?
 

Attachments

  • upload_2018-9-5_14-2-33.png
    upload_2018-9-5_14-2-33.png
    67.5 KB · Views: 522
Physics news on Phys.org
I think your approach is going to need to be a bit more algebraic. Rather than trying to expand those exponential representation operators, you'll want to map the question back to a question about the reference vector, and take advantage of the fact that we're talking here about the Lorentz group (with inverses and everything!).

Given:
|p,\lambda\rangle=U(L(p))|p_R,\lambda\rangle
then
U(L(p))^{-1}|p,\lambda\rangle=|p_R,\lambda\rangle
now try to frame the eigen-value question you're being asked to the transformed question on \lvert p_R, \lambda\rangle.

This is the basic transform--solve--transform-back method.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top